首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gunungsewu, the southernmost subzone of the Southern Mountains, central Java, is a classic karst terrain, bounded by the Oyo River on the north and the Indian Ocean on the south. In this study, the Oyo River, the main drainage in the area, is divided into 14 segments, and the fractal dimension of each segment is determined by the box-counting method. The 14 segments show various values of fractal dimensions, which are controlled by lithology and geologic structures of the area that is being dissected by the river. Easily eroded lithologies have larger fractal dimensions, and the value changes abruptly when the river crosses faults. Fractal dimensions of six underground rivers in the Bribin, Sodong, Semuluh, Jomblang, Soga, and Sumurup caves, and the surface topography above the caves were also determined. The caves have fractal dimensions that range from 1.043 ±0.01 to 1.08±0.01; the surface topography has fractal dimensions that range from 1.49±0.01 to 1.732±0.01. The fractal dimension of an underground river is proportional to the fractal dimension of the surface topography over the passage. Larger fractal dimensions of underground rivers are associated with smaller flow rates of the rivers. Received, June 1998Revised, March 1999, August 1999, February 2000Accepted, February 2000  相似文献   

2.
The paper reports newly obtained data on the geochronology of the Dovyren intrusive complex and associated metarhyolites of the Inyaptuk Formation in the Synnyr Range. The data were obtained by local LA-ICPMS analysis of zircons in samples. The U-Pb age of olivine-free gabbronorite from near the roof of the Yoko-Dovyren Massif is 730 ± 6 Ma (MSWD = 1.7, n = 33, three samples) is close to the estimated age of 731 ± 4 Ma (MSWD = 1.3, n = 56, five samples) of a 200-m-thick sill beneath the pluton. These data overlap the age of recrystallized hornfels found within the massif (“charnockitoid”, 723 ± 7 Ma, MSWD = 0.12, n = 10) and a dike of sulfidated gabbronorite below the bottom of the massif (725 ± 8 Ma, MSWD = 2.0, n = 15). The estimates are also consistent with the age of albite hornfels (721 ± 6 Ma, MSWD = 0.78, n = 12), which was produced in a low-temperature contact metamorphic facies of the host rocks. The average age of the Dovyren Complex is 728.4 ± 3.4 Ma (MSWD = 1.8, n = 99) based on data on the sill, near-roof gabbronorite, and “charnockitoid”) and is roughly 55 Ma older than the estimate of 673 ± 22 Ma (Sm-Nd; [13]). The U-Pb system of zircon in two quartz metaporphyre samples from the bottom portion of the Inyaptuk volcanic formation in the northeastern part of the Yoko-Dovyren Massif turns out to be disturbed. The scatter of the data points can be explained by the effect of two discrete events. The age of the first zircon population is then 729 ± 14 Ma (MSWD = 0.74, n = 8), and that of the second population is 667 ± 14 Ma (MSWD = 1.9, n = 13). The older value pertains to intrusive rocks of Dovyren, and the age of the “rejuvenated” zircon grains corresponds to the hydrothermal-metasomatic processes, which affected the whole volcano-plutonic sequence and involved the serpentinization of the hyperbasites. This is validated by the results of Rb-Sr isotopic studies with the partial acid leaching of two serpentinized peridotite samples from the Verblyud Sill. These studies date the overprinted processes at 659 ± 5 Ma (MSWD = 1.3, n = 3).  相似文献   

3.
海南大坡岩体位于五指山褶皱带内,主要受昌江—琼海构造带、琼西构造带与潭爷断陷构造带控制.岩石地球化学及岩石学研究表明,大坡岩体形成于海西-印支晚期,岩性单一,主要为中细粒似斑状黑云母二长花岗岩.岩体显示为Ⅰ型花岗岩与S型花岗岩的混合,主体以地壳物质部分熔融为主,形成过程有少量地幔物质加入.元素对的比值及稀土元素配分特征说明岩体钨锡等多金属含矿性可能较差.  相似文献   

4.
Pamancalan is located in Lebak Regency, Province of Banten. This area is located in the western part of Java Island, Indonesia. The geothermal manifestation in this area is in the form of hot spring in Cipamancalan River. But, how the structure of the geothermal system, the reservoir depth, and the thermal source in the Pancamalan area has not been studied much. Therefore, there is a need to conduct a geophysics study by surveying the gravity and magnetic field. A study, which used magnetic and gravity data to discover reservoir, has been conducted in the Pamancalan geothermal area in Lebak, Banten. Topographic map for total magnetic and earth gravity anomaly shows that the anomaly is located in the center and southern part of the presumed reservoir. 2.5-D section model of magnetic anomaly shows that there is a rock formation which shaped the geothermal system in Pamancalan. The thermal source is diorite which is a by-product of Hanjawar Mountain; the reservoir rocks consist of sandstone, limestone, and breccia; and the cap rock is in the form of clay and tuff. It is predicted that there is an intrusive body which functions as thermal source in the depth between 1650 and 4000 m, the reservoir depth is around 700 m, and the depth of clay cap is around 0 to 700 m. The geothermal manifestation in Pamancalan area is controlled by Cigeledug fault from the southwest and Cipamancalan fault from the north and south.  相似文献   

5.
This paper reports the first results of a study of 11 isotope systems (3He/4He, 40Ar/36Ar, 34S/32S, 65Cu/63Cu, 62Ni/60Ni, 87Sr/86Sr, 143Nd/144Nd, 206–208Pb/204Pb, Hf–Nd, U–Pb, and Re–Os) in the rocks and ores of the Cu–Ni–PGE deposits of the Norilsk ore district. Almost all the results were obtained at the Center of Isotopic Research of the Karpinskii All-Russia Research Institute of Geology. The use of a number of independent genetic isotopic signatures and comprehensive isotopic knowledge provided a methodic basis for the interpretation of approximately 5000 isotopic analyses of various elements. The presence of materials from two sources, crust and mantle, was detected in the composition of the rocks and ores. The contribution of the crustal source is especially significant in the paleofluids (gas–liquid microinclusions) of the ore-forming medium. Crustal solutions were probably a transport medium during ore formation. Air argon is dominant in the ores, which indicates a connection between the paleofluids and the atmosphere. This suggests intense groundwater circulation during the crystallization of ore minerals. The age of the rocks and ores of the Norilsk deposits was determined. The stage of orebody formation is restricted to a narrow age interval of 250 ± 10 Ma. An isotopic criterion was proposed for the ore-bearing potential of mafic intrusions in the Norilsk–Taimyr region. It includes several interrelated isotopic ratios of various elements: He, Ar, S, and others.  相似文献   

6.
Clay subfractions (SFs) of <0.1, 0.1–0.2, 0.2–0.3, 0.3–0.6, 0.6–2 and 2–5 μm separated from Middle Riphean shales of the Debengda Formation are studied using the TEM, XRD, K-Ar and Rb-Sr isotopic methods. The oxygen and hydrogen isotope compositions in the SFs are studied as well. The low-temperature illite-smectite is dominant mineral in all the SFs except for the coarsest ones. The XRD, chemical and isotopic data imply that two generations of authigenic illite-smectite different in age are mixed in the SFs. The illite crystallinity index decreases in parallel with size diminishing of clay particles. As compared to coarser SFs, illite of fine-grained subfractions is enriched in Al relative to Fe and Mg, contains more K, and reveals higher K/Rb and Rb/Sr ratios. The Rb-Sr age calculated by means of the leachochron (“inner isochron”) method declines gradually from 1254-1272 Ma in the coarsest SFs to 1038-1044 Ma in finest ones, while the K-Ar age decreases simultaneously from 1225–1240 to 1080 Ma. The established positive correlation of δ18O and δD values with dimensions of clay particles in the SFs seems to be also consistent with the mixing systematics. The isotopic systematics along with data on mineral composition and morphology lead to the conclusion that mixedlayer illite-smectite was formed in the Debengda shales during two periods 1211–1272 and 1038–1080 Ma ago. The first period is likely close to the deposition time of sediments and corresponds to events of burial catagenesis, whereas the second one is correlative with the regional uplift and changes in hydrological regime during the pre-Khaipakh break in sedimentation.  相似文献   

7.
Utilizing theories of minerageny and prospecting mineralogy, the authors studied the attitude, morphotype and chemical composition of metallic minerals of pyrite, gold, chalcopyrite, galena and sphalerite, non-metallic minerals of quartz, carbonate, dolomite and rutile in the Puziwan gold deposit. The study shows the following results. (1) The mineral assemblage is complex and the species of sulfide are abundant with occurrences of sulfosalt minerals. (2) The composition in the minerals is complex and there rich micro elements, including As, Sb, Bi, Se, Te, Au, Ag, Cu, Pb, Zn, and Cr, Ni, V. The typomorphic characteristics of the association of the elements and their specific value suggest that gold mineralization is associated with shallow magmatic hydrothermal activity, the oreforming fluid is the mixture of abundant rising alkali magmatic water originating from the mantle or the lower crust and the descending acid atmospheric water. (3) Ankerite, Fe-rich sphalerite, granular Ti-rich rutile are widely distributed, which indicate great denudation depths, high mineralization temperature. The deposit is found in the middle and shallow positions of the porphyry series. The deep layers are not favorable for gold mineralization. (4) Copper minerals are rich in the ores and sulfides have high content of copper, suggesting possible porphyry-type Cu (Au) mineralization in deep positions and the surrounding areas.  相似文献   

8.
Livingstonite is the principal ore mineral in the deposits of the Huitzuco District in the State of Guerrero, Mexico. The ore is found in the lower part of the Morelos Formation, which consists of a thick bed of sedimentary anhydrite containing lenses of dolomite and dolomite breccia. In the unweathered ore practically all the mercury is in the livingstonite, whereas the antimony occurs partly in the livingstonite and partly in stibnite. Native sulfur forms pockets as much as 30 centimeters in diameter in the ore and is also found in gypsum on the surface away from the ore.It appears that the deposition of livingstonite, rather than of the combination of cinnabar and stibnite that is more usual in other districts, was caused by the native sulfur present in considerable quantity scattered through the sedimentary dolomite and anhydrite above, below, and in the ore. Since the formula of livingstonite is actually HgSb4S8 (not HgSb4S7 as was previously supposed), it is not stable in solutions containing only HgS, Sb2S3, Na2S, and H2O. It has been proved by one of us, experimentally, that in order to form livingstonite, the solutions must contain elemental sulfur in addition to HgS, Sb2S3, Na2S, and H2O. In such solutions the solubility of mercuric sulfide is extremely low. However, the problem of transport is overcome if the elemental sulfur is already present in the wall rock. In that case, the reaction of the elemental sulfur with a solution containing mercuric sulfide and antimony sulfide, but not saturated with either, would precipitate livingstonite, as was proved by our experimental work.  相似文献   

9.
岑巩县羊桥乡罗家塘杷榔组仅出露中-上部地层,岩性单一,均为青灰、灰绿色粉砂质泥、页岩.在其上部层位发现了俞氏贵州始海百合(Guizhoueocrinus yui Zhao,Parsley et Peng,2007),计有棘皮动物始海百合、腕足动物、软体动物-软舌螺、节肢动物-三叶虫等8属9种,包括了2个未定名的新种和1...  相似文献   

10.
11.
A. L. Marcus 《GeoJournal》1978,2(6):569-573
In Ashkelon two different man-environment interactions have stimulated coastal slope erosion by enhancing runoff volumes. The first type of interaction is recreation and the second is the result of Bedouin pastoral nomadism. The impact of recreation creates impervious surfaces such as walkways, parking lots, and stairways, in addition to storm sewer outlets that concentrate and enlarge runoff volumes. The impact of pastoral nomadism is limited to the crumbling of the slope surfaces by animal grazing. This creates favorable environments for rapid runoff and erosion. The results of these interactions are a coastal slope surface inundated by dense gulley networks. Large alluvial fans are also built-up at the slope base. The fans limit wave attack and re-enforce the importance of runoff as an agent of coastal slope erosion.Dr. Alan L. Marcus is Lecturer of Geomorphology  相似文献   

12.
The annual salt budget of the Zuari is examined. The characteristics of the estuary differ markedly from the low run off season during November–May to the heavy run off period of the southwest monsoon from June to October. During November–May the estuary is vertically mixed and the two processes controlling the transport of salt are run off induced advective transport out of the estuary, and tidally induced diffusive transport into the estuary. The magnitude of the latter is about 20% larger, leading to a salinity rise in the estuary. The diffusion coefficient has been estimated to be 233 ± 101 m2/sec. With the onset of the southwest monsoon, the run off increases dramatically, and the estuary loses about 75% of its salt during the first two months of the season. About 2/3 of this loss is recovered in the next two months when the run off decreases. Because the estuary is partially stratified during June–October, gravitational circulation is expected to play a role in addition to tidal diffusion and run off. The magnitude of its contribution has, however, not yet been determined.  相似文献   

13.
A preliminary paleogeographic reconstruction of the northern Mixteca terrain in southern Mexico is presented for the Middle Jurassic. The reconstruction is derived from combined analyses of spatial distribution of marine-continental Jurassic sedimentary units, identification of sediment source, and observations based on sedimentary indicators of environment and transport directions, as well as paleomagnetic and anisotropy of magnetic susceptibility (AMS) results. There is an overall agreement between the AMS magnetic fabric results and the sedimentary indicators of current directions and paleogeographic elements. The results suggest a coastline at the south-southwest portion of this terrain, a general transport of fluvial sediments to the south and southwest, and marine influxes from the south. A Pacific margin provenance is supported by the paleomagnetic results for the northern portion of the Mixteca terrain.  相似文献   

14.
王方正  路凤香 《岩石学报》1995,11(2):227-241
根据该地学断面Vp结构模型,造山带中基性火成岩、金伯利岩和花岗岩中的深源包体资料,以及火成岩和变质岩,特别是超高压变质岩和超基性岩的分布和组成所揭示的壳幔深部组成的信息,结合与相对应的岩石实验Vp数据的对比,建立了秦岭洛阳-伊川-十堰-秭归地学断面及邻区的岩石圈组成的岩石学模型。这一岩石学模型表明,华北与扬子克拉通,南北秦岭造山带与其克拉通的过渡带岩石圈的岩石学模型各不相同。华北克拉通下地壳是以麻粒岩相中酸性片麻岩和紫苏花岗岩为主,同时含有基性麻粒岩,而扬子克拉通的下地壳是以角闪岩相-麻粒岩相酸性片麻岩和TTG为主体,广泛存在基性火成岩层。南北秦岭造山带的中下地壳各自继承了扬子和华北克拉通的中下地壳的特点,但已被强烈改造;南北秦岭造山带上地幔组成差异性较大,北秦岭上地幔上部以榴辉岩及榴闪岩为主,而南秦岭以蛇纹石化橄榄岩为主体,各单元100km以下的地幔都是一样的,都是石榴石二辉橄榄岩组成。因此,秦岭造山带是一个具有近30亿年历史的由不同大陆块体拼合组成的,不具简单的岩石圈分层结构样式。  相似文献   

15.
自西藏区域地质调查大队创建康托组以来,康托组岩石地层单位广泛应用于羌塘地区,普遍认为其时代为新近纪。笔者于丁固—加措地区的康托组地层中采获古近纪轮藻化石Obtusocharasp.,O.lanpingensis,Gyrogonaqinajiangica和部分孢粉化石,并在康托组底部安山岩中获K-Ar年龄65.1~66.5Ma。上述轮藻组合与同位素年龄指示的地层时代为古新世—始新世,据此将测区康托组的时代确定为古近纪。由于测区康托组之上被唢纳湖组或鱼鳞山组角度不整合覆盖,因此康托组时代的确定不仅进一步完善了测区新生代地层系统,还指示测区在康托组与唢纳湖组或鱼鳞山组之间发生了一次强烈的构造运动。  相似文献   

16.
《Precambrian Research》1987,36(2):127-142
Sinian glaciogenic rocks are widespread in Shennongjia, Hubei. They are best preserved in western Shennongjia where the glacial Gucheng and Nantuo Formations are separated by the non-glacial Datanpo Formation, which is chiefly composed of carbonaceous silty shale and siltstone. In eastern Shennongjia most of the Lower Sinian succession is, however, absent and the Nantuo Formation rests with angular unconformity on the pre-Sinian basement.The glacial sedimentary facies mainly comprise three types; namely the lodgement facies, meltwater facies and proglacial subaqueous facies. The lodgement facies is predominant in the eastern area but outwash deposits are more abundant in the western area. Major glacial transport during the Nantuo Ice Age is inferred to have been from the ESE, based on pre-glacial palaeogeography, provenance of clasts and regional variations in glacial sedimentary facies.During the Nantuo Ice Age, the Jingshan Mountain, which is situated to the east of Shennongjia, was a glacial source area. Jianghan glacial erosion and deposition was in the form of an incomplete ring-shape; the Mufu Mountain area, which is situated at the juncture between southeastern Hubei and northwestern Jiangxi provinces, and was far removed from the source areas, received outwash deposits.  相似文献   

17.
The basal unit of the Amadeus Basin sequence is the Heavitree Quartzite, and this formation usually forms a single east‐west ridge along the northern side of the MacDonnell Ranges. However, at Alice Springs there are two such ridges. Basement rocks crop out on the northern side of each ridge, and dolomite and shale of the Bitter Springs Formation crop out on their southern sides. The northern outcrop of dolomite and shale is tightly folded, and is separated from the southern outcrop of basement by a major fault. The bedding of the sediments, the axial plane of the fold, and the fault all dip south at about 45°. Inverted facings on parasitic folds indicate that the northern outcrop of quartzite and dolomite plus shale is an antiform in inverted rocks. Hence the southern outcrop of basement and quartzite is synformal, and is interpreted as the frontal part of a fold nappe. The nappe started as a recumbent anticline whose middle limb of quartzite sheared out as the anticline travelled several kilometres southwards relative to the dolomite and shale below, which formed a tight recumbent syncline. Later monoclinal uplift of the northern half of the area tilted the nappe into its present south‐dipping attitude, thus converting the recumbent anticline into a synform and the recumbent syncline into an antiform.  相似文献   

18.
 A geophysical survey was conducted to determine the depth of the base of the water-table aquifer in the southern part of Jackson Hole, Wyoming, USA. Audio-magnetotellurics (AMT) measurements at 77 sites in the study area yielded electrical-resistivity logs of the subsurface, and these were used to infer lithologic changes with depth. A 100–600 ohm-m geoelectric layer, designated the Jackson aquifer, was used to represent surficial saturated, unconsolidated deposits of Quaternary age. The median depth of the base of the Jackson aquifer is estimated to be 200 ft (61 m), based on 62 sites that had sufficient resistivity data. AMT-measured values were kriged to predict the depth to the base of the aquifer throughout the southern part of Jackson Hole. Contour maps of the kriging predictions indicate that the depth of the base of the Jackson aquifer is shallow in the central part of the study area near the East and West Gros Ventre Buttes, deeper in the west near the Teton fault system, and shallow at the southern edge of Jackson Hole. Predicted, contoured depths range from 100 ft (30 m) in the south, near the confluences of Spring Creek and Flat Creek with the Snake River, to 700 ft (210 m) in the west, near the town of Wilson, Wyoming. Received, May 1997 · Revised, February 1998 · Accepted, April 1998  相似文献   

19.
The REE (Ln), Y, Sc, and Th distribution in the unique complex rare-metal ores of the Tomtor deposit is considered. Significant variability of these components and REE composition is revealed. Ore blocks with elevated Y and HREE contents are identified among prevailing LREE-enriched ores. It is established that the REE variations in the ores are correlated with evolution of REE carriers during epigenetic transformations of the carbonatite weathering products, in particular, with a replacement of Ce-bearing minerals (monazite and florencite) by Y-bearing mineral, xenotime. It is found that LREE and HREE exhibit different behavior during formation of the Tomtor ores, which is expressed in the inert behavior and residual accumulation of Ce-group REE at essential introduction of Y, HREE, Sc, and Th during epigenetic transformation of weathering products of carbonatites, which represent one of the main factors of the formation of the unique rare-metal ores of the Tomtor deposit.  相似文献   

20.
The Kay Tanda epithermal Au deposit in Lobo, Batangas is one of the Au deposits situated in the Batangas Mineral District in southern Luzon, Philippines. This study aims to document the geological, alteration, and mineralization characteristics and to determine the age of the mineralization, the mechanism of ore deposition, and the hydrothermal fluid characteristics of the Kay Tanda deposit. The geology of Kay Tanda consists of (i) the Talahib Volcanic Sequence, a Middle Miocene dacitic to andesitic volcaniclastic sequence that served as the host rock of the mineralization; (ii) the Balibago Diorite Complex, a cogenetic intrusive complex intruding the Talahib Volcanic Sequence; (iii) the Calatagan Formation, a Late Miocene to Early Pliocene volcanosedimentary formation unconformably overlying the Talahib Volcanic Sequence; (iv) the Dacite Porphyry Intrusives, which intruded the older lithological units; and (v) the Balibago Andesite, a Pliocene postmineralization volcaniclastic unit. K‐Ar dating on illite collected from the alteration haloes around quartz veins demonstrated that the age of mineralization is around 5.9 ± 0.2 to 5.5 ± 0.2 Ma (Late Miocene). Two main styles of mineralization are identified in Kay Tanda. The first style is an early‐stage extensive epithermal mineralization characterized by stratabound Au‐Ag‐bearing quartz stockworks hosted at the shallower levels of the Talahib Volcanic Sequence. The second style is a late‐stage base metal (Zn, Pb, and Cu) epithermal mineralization with local bonanza‐grade Au mineralization hosted in veins and hydrothermal breccias that are intersected at deeper levels of the Talahib Volcanic Sequence and at the shallower levels of the Balibago Intrusive Complex. Paragenetic studies on the mineralization in Kay Tanda defined six stages of mineralization; the first two belong to the first mineralization style, while the last four belong to the second mineralization style. Stage 1 is composed of quartz ± pyrophyllite ± dickite/kaolinite ± diaspore alteration, which is cut by quartz veins. Stage 2 is composed of Au‐Ag‐bearing quartz stockworks associated with pervasive illite ± quartz ± smectite ± kaolinite alteration. Stage 3 is composed of carbonate veins with minor base metal sulfides. Stage 4 is composed of quartz ± adularia ± calcite veins and hydrothermal breccias, hosting the main base metal and bonanza‐grade Au mineralization, and is associated with chlorite‐illite‐quartz alteration. Stage 5 is composed of epidote‐carbonate veins associated with epidote‐calcite‐chlorite alteration. Stage 6 is composed of anhydrite‐gypsum veins with minor base metal mineralization. The alteration assemblage of the deposit evolved from an acidic mineral assemblage caused by the condensation of magmatic volatiles from the Balibago Intrusive Complex into the groundwater to a slightly acidic mineral assemblage caused by the interaction of the host rocks and the circulating hydrothermal waters being heated up by the Dacite Porphyry Intrusives to a near‐neutral pH toward the later parts of the mineralization. Fluid inclusion microthermometry indicates that the temperature of the system started to increase during Stage 1 (T = 220–250°C) and remained at high temperatures (T = 250–290°C) toward Stage 6 due to the continuous intrusion of Dacite Porphyry Intrusives at depth. Salinity slightly decreased toward the later stages due to the contribution of more meteoric waters into the hydrothermal system. Boiling is considered the main mechanism of ore deposition based on the occurrence of rhombic adularia, the heterogeneous trapping of fluid inclusions of variable liquid–vapor ratios, the distribution of homogenization temperatures, and the gas ratios obtained from the quantitative fluid inclusion gas analysis of quartz. Ore mineral assemblage and sulfur fugacity determined from the FeS content of sphalerite at temperatures estimated by fluid inclusion microthermometry indicate that the base metal mineralization at Kay Tanda evolved from a high sulfidation to an intermediate sulfidation condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号