首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A suite of vast stellar surveys mapping the Milky Way, culminating in the Gaia mission, is revolutionizing the empirical information about the distribution and properties of stars in the Galactic stellar disk. We review and lay out what analysis and modeling machinery needs to be in place to test mechanism of disk galaxy evolution and to stringently constrain the Galactic gravitational potential, using such Galactic star-by-star measurements. We stress the crucial role of stellar survey selection functions in any such modeling; and we advocate the utility of viewing the Galactic stellar disk as made up of ‘mono-abundance populations’ (MAPs), both for dynamical modeling and for constraining the Milky Way’s evolutionary processes. We review recent work on the spatial and kinematical distribution of MAPs, and point out how further study of MAPs in the Gaia era should lead to a decisively clearer picture of the Milky Way’s dark-matter distribution and formation history.  相似文献   

2.
Efficient spectrographs at large telescopes have made it possible to obtain high-resolution spectra of stars with high signal-to-noise ratio and advances in model atmosphere analyses have enabled estimates of high-precision differential abundances of the elements from these spectra, i.e. with errors in the range 0.01–0.03 dex for F, G, and K stars. Methods to determine such high-precision abundances together with precise values of effective temperatures and surface gravities from equivalent widths of spectral lines or by spectrum synthesis techniques are outlined, and effects on abundance determinations from using a 3D non-LTE analysis instead of a classical 1D LTE analysis are considered. The determination of high-precision stellar abundances of the elements has led to the discovery of unexpected phenomena and relations with important bearings on the astrophysics of galaxies, stars, and planets, i.e. (i) Existence of discrete stellar populations within each of the main Galactic components (disk, halo, and bulge) providing new constraints on models for the formation of the Milky Way. (ii) Differences in the relation between abundances and elemental condensation temperature for the Sun and solar twins suggesting dust-cleansing effects in proto-planetary disks and/or engulfment of planets by stars; (iii) Differences in chemical composition between binary star components and between members of open or globular clusters showing that star- and cluster-formation processes are more complicated than previously thought; (iv) Tight relations between some abundance ratios and age for solar-like stars providing new constraints on nucleosynthesis and Galactic chemical evolution models as well as the composition of terrestrial exoplanets. We conclude that if stellar abundances with precisions of 0.01–0.03 dex can be achieved in studies of more distant stars and stars on the giant and supergiant branches, many more interesting future applications, of great relevance to stellar and galaxy evolution, are probable. Hence, in planning abundance surveys, it is important to carefully balance the need for large samples of stars against the spectral resolution and signal-to-noise ratio needed to obtain high-precision abundances. Furthermore, it is an advantage to work differentially on stars with similar atmospheric parameters, because then a simple 1D LTE analysis of stellar spectra may be sufficient. However, when determining high-precision absolute abundances or differential abundance between stars having more widely different parameters, e.g. metal-poor stars compared to the Sun or giants to dwarfs, then 3D non-LTE effects must be taken into account.  相似文献   

3.
4.
Gaia is the next astrometry mission of the European Space Agency (ESA), following up on the success of the Hipparcos mission. With a focal plane containing 106 CCD detectors, Gaia will survey the entire sky and repeatedly observe the brightest 1,000 million objects, down to 20th magnitude, during its 5-year lifetime. Gaia’s science data comprises absolute astrometry, broad-band photometry, and low-resolution spectro-photometry. Spectroscopic data with a resolving power of 11,500 will be obtained for the brightest 150 million sources, down to 17th magnitude. The thermo-mechanical stability of the spacecraft, combined with the selection of the L2 Lissajous point of the Sun-Earth/Moon system for operations, allows stellar parallaxes to be measured with standard errors less than 10 micro-arcsecond (μas) for stars brighter than 12th magnitude, 25 μas for stars at 15th magnitude, and 300 μas at magnitude 20. Photometric standard errors are in the milli-magnitude regime. The spectroscopic data allows the measurement of radial velocities with errors of 15 km s−1 at magnitude 17. Gaia’s primary science goal is to unravel the kinematical, dynamical, and chemical structure and evolution of the Milky Way. In addition, Gaia’s data will touch many other areas of science, e.g., stellar physics, solar-system bodies, fundamental physics, and exo-planets. The Gaia spacecraft is currently in the qualification and production phase. With a launch in 2013, the final catalogue is expected in 2021. The science community in Europe, organised in the Data Processing and Analysis Consortium (DPAC), is responsible for the processing of the data.  相似文献   

5.
One of the most promising space missions of the European Space Agency is the astrometric satellite Gaia , which will provide very precise astrometry and multicolour photometry, for all 1.3 billion objects to   V ∼ 20  , and radial velocities with accuracies of a few km s−1 for most stars brighter than   V ∼ 17  . Consequently, full homogeneous six-dimensional phase-space information for a huge number of stars will become available. Our Monte Carlo simulator has been used to estimate the number of white dwarfs potentially observable by Gaia . From this we assess the white dwarf luminosity functions that Gaia will obtain and discuss in depth the scientific returns of Gaia in the specific field of white dwarf populations. Scientifically attainable goals include, among others, a reliable determination of the age of the Galactic disc, a better knowledge of the halo of the Milky Way and the reconstruction of the star formation history of the Galactic disc. Our results also demonstrate the potential impact of a mission such as Gaia within the context of current understanding of white dwarf cooling theory.  相似文献   

6.
星流在星系形成与演化过程中扮演了重要的角色,对银河系中星流的研究将有助于进一步探究银河系的合并历史.将LAMOST(Large Sky Area Multi-Object Fiber Spectroscopic Telescope)DR6光谱数据以及SDSS(Sloan Digital Sky Survey)DR12光谱数据分别与Gaia(Global Astrometric Interferometer for Astrophysics)DR2天体测量数据交叉匹配,获得恒星自行等数据.对GD-1星流在速度空间、几何空间和金属丰度上进行限制,从LAMOST DR6和SDSS DR12数据中共获得了157颗星流成员星.GD-1星流的平均金属丰度为[Fe/H]=-2.16±0.10 dex,延伸长度超过80°.收集前人给出的GD-1星流高概率成员星,组成较大的成员星样本进行对比分析,发现GD-1星流的金属丰度分布呈现内低外高的特点,沿着星流方向径向速度分布特点是两端大、中间小,?1=-20°(?1为GD-1星流坐标系横坐标)和?1=-60°附近的间隙是因为成员星运动差异形成的.根据成员星分布及其速度分布特性,推测GD-1星流起源位置是在?1=-40°附近.  相似文献   

7.
We explore the predictions of the standard hierarchical clustering scenario of galaxy formation, regarding the numbers and metallicities of PopIII stars that are likely to be found within our Galaxy today. By PopIII we refer to stars formed at large redshift ( z >4), with low metallicities ([ Z /Z]<−2.5) and in small systems (total mass ≲ 2×108 M) that are extremely sensitive to stellar feedback, and which through a prescribed merging history end up becoming part of the Milky Way today. An analytic, extended Press–Schechter formalism is used to obtain the mass functions of haloes which will host PopIII stars at a given redshift, and which will end up in Milky Way sized systems today. Each of these is modelled as a mini-galaxy, with a detailed treatment of the dark halo structure, angular momentum distribution, final gas temperature and disc instabilities, all of which determine the fraction of the baryons that are subject to star formation. The use of new primordial metallicity stellar evolutionary models allows us to trace the history of the stars formed, and give accurate estimates of their expected numbers today and their location in L /L versus T /K Hertzsprung–Russell (HR) diagrams. A first comparison with observational data suggests that the initial mass function (IMF) of the first stars was increasingly high-mass weighted towards high redshifts, levelling off at z ≳9 at a characteristic stellar mass scale m s=10–15 M.  相似文献   

8.
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.  相似文献   

9.
Star formation is a fundamental process that dominates the life-cycle of various matters in galaxies: Stars are formed in molecular clouds, and the formed stars often affect the surrounding materials strongly via their UV photons, stellar winds, and supernova explosions. It is therefore revealing the distribution and properties of molecular gas in a galaxy is crucial to investigate the star formation history and galaxy evolution. Recent progress in developing millimeter and sub-millimeter wave receiver systems has enabled us to rapidly increase our knowledge on molecular clouds. In this proceedings, the recent results from the surveys of the molecular clouds in the Milky Way and the Magellanic Clouds as well as the Galactic center as the most active regions in the Milky Way are presented. The high sensitivity with unrivaled high resolution of ALMA will play a key role in detecting denser gas that is tightly connected to star formation.  相似文献   

10.
Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.  相似文献   

11.
We reviewed the recent progress in the field of stellar/galactic archeology, which is a study of the relics from the early galaxy. The oldest and most pristine objects that can be observed in the galaxy are the low mass metal poor stars of the Milky Way. They were formed during the early phases, when the ISM might have been polluted only by the Pop-III supernovae. With the recent large spectroscopic surveys (e.g. HK survey by Beers and collaborators, the Hamburg-ESO survey by Christlieb and collaborators and Sloan Digital Sky Survey) it has been possible to get clues on the nature of the first stars that has contributed to the heavy elements. Most of these metal-poor low mass stars also retain their signature of the early dynamical evolution of the galaxy, which can be studied through their orbits around the galaxy and spatial distribution. Here, we discuss the connection between the chemical and the kinematical properties of metal-poor stars in order to probe the early galaxy formation. We also discuss about the globular clusters, the satellite galaxies around the Milky Way and its possible contribution to the formation of the galaxy halo.  相似文献   

12.
At the dynamic center of the Milky Way high spatial resolution, near-infrared imaging and spectroscopy have made it possible in the last few years to measure stellar velocities down to separations of less than five light days from the compact radio source SgrA* (in the constellation Sagittarius). These measurements make a compelling case for the presence of a compact, central dark mass of 2.6 × 106 solar masses. Simple physical considerations show that this dark mass cannot consist of a stable cluster of stars, stellar remnants, substellar condensations or a degenerate gas of elementary particles. Energy equipartition requires that at least 105 solar masses must be associated with SgrA* itself and is enclosed within less than 8 light minutes (equivalent to 15 Schwarzschild radii of a million solar mass black hole). If one accepts these arguments it is hard to escape the conclusions that there must be a massive black hole at the core of the Milky Way.  相似文献   

13.
The colours of stellar bulges and of inner stellar discs are comparable, and consistent with rather similar mean metallicities and ages. Indeed, the mean chemical abundances of the Milky Way bulge and old disc are approximately equal. Further, the scalelengths of discs and bulges are correlated. These observations imply a close relationship between discs and bulges, and may support models in which stellar bulges form from stellar discs. The present paper discusses constraints on this scenario from the stellar phase-space density of bulges and of discs. Phase-space density cannot increase in the absence of collisional processes. We show here that the maximum phase-space density of galactic bulges is higher than that of inner discs, arguing that instabilities of purely stellar discs cannot form bulges. Rather, the high densities of bulges probably reflect gaseous dissipation. Gas inflow from the disc would complicate the interpretation of the similarities in stellar colours between discs and bulges. Gas inflow from the stellar halo, if one exists, may be favoured on angular momentum grounds, but this means of formation of the bulge would provide no explanation for the relationships between disc and bulge in any one galaxy. At least in the Milky Way, the metallicity distribution of the bulge is not consistent with the bulge being built up from the dense regions of accreted satellite galaxies and/or globular clusters.  相似文献   

14.
《New Astronomy》2002,7(4):161-169
In the usual and most widespread textbook picture of the Milky Way Galaxy, disk stars like the Sun are referred to as Population I, the spheroidal or halo component in turn as Population II. The latter is thought of as the pressure-supported, metal-poor relic of the early Galaxy, with renewed interest in recent years in the search for dark matter via microlensing. Modelling the putative massive compact halo objects however, faces the problem that the stellar halo is generally considered to consist of only a few billion solar masses. Here we present observational evidence that even this low budget may be a factor ten too high. If so, this immediately implies that the classical population II of halo stars is fairly irrelevant, not only in the dark matter context, but, in particular, in models of the formation and evolution of the Milky Way Galaxy.  相似文献   

15.
《New Astronomy》2002,7(7):395-433
The stellar initial mass function at high redshift is an important defining property of the first stellar systems to form and may also play a role in various dark matter problems. We here determine the faint stellar luminosity function in an apparently dark-matter-dominated external galaxy in which the stars formed at high redshift. The Ursa Minor dwarf spheroidal galaxy is a system with a particularly simple stellar population—all of the stars being old and metal-poor—similar to that of a classical halo globular cluster. A direct comparison of the faint luminosity functions of the UMi dSph and of similar metallicity, old globular clusters is equivalent to a comparison of the initial mass functions and is presented here, based on deep HST WFPC2 and STIS imaging data. We find that these luminosity functions are indistinguishable, down to a luminosity corresponding to ∼0.3 M. Our results show that the low-mass stellar IMF for stars that formed at very high redshift is apparently invariant across environments as diverse as those of an extremely low-surface-brightness, dark-matter-dominated dwarf galaxy and a dark-matter-free, high-density globular cluster within the Milky Way.  相似文献   

16.
Stellar abundances of beryllium are useful in different areas of astrophysics, including studies of the Galactic chemical evolution, of stellar evolution, and of the formation of globular clusters. Determining Be abundances in stars is, however, a challenging endeavor. The two Be II resonance lines useful for abundance analyses are in the near UV, a region strongly affected by atmospheric extinction. CUBES is a new spectrograph planned for the VLT that will be more sensitive than current instruments in the near UV spectral region. It will allow the observation of fainter stars, expanding the number of targets where Be abundances can be determined. Here, a brief review of stellar abundances of Be is presented together with a discussion of science cases for CUBES. In particular, preliminary simulations of CUBES spectra are presented, highlighting its possible impact in investigations of Be abundances of extremely metal-poor stars and of stars in globular clusters.  相似文献   

17.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

18.
The fossil record of the Milky Way indicates an evolution including periodic accretions of smaller galaxies and clusters, consistent with hierarchical models of galaxy formation. I discuss three observational programs that demonstrate that the phase space distribution of stars, clusters and dwarf galaxies in the Galactic halo contains degrees of substructure left by the débris of tidally disrupted stellar systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The space experiment Gaia, the approved cornerstone 6 ESA mission, will observe up to a billion stars in our Galaxy and obtain their astrometric positions on a micro-arcsec level, multi-band photometry as well as spectroscopic observations. It is expected that about one million Eclipsing Binaries (EBs) (with V ≤ 16 mag) will be discovered and the observing fashion will be quite similar to Hipparcos/Tycho mission operational mode. The combined astrometric, photometric and spectroscopic data will be used to compute the physical parameters of the observed EBs. From a study of a small sample of EBs, it is shown that the agreement between the fundamental stellar parameters, derived from ground-based and Hipparcos (Gaia-like) observations, is more than satisfactory and the Gaia data will be suitable to obtain accurate binary solutions.  相似文献   

20.
The phase-space structure of our Galaxy holds the key to understand and reconstruct its formation. The ΛCDM model predicts a richly structured phase-space distribution of dark matter and (halo) stars, consisting of streams of particles torn from their progenitors during the process of hierarchical merging. While such streams quickly loose their spatial coherence in the process of phase mixing, the individual stars keep their common origin imprinted into their kinematic and chemical properties, allowing the recovery of the Galaxy’s individual “building blocks”. The field of Galactic Archeology has witnessed a dramatic boost over the last decade, thanks to the increasing quality and size of available data sets. This is especially true for the solar neighborhood, a volume of 1–2 kpc around the sun, where large scale surveys like SDSS/SEGUE continue to reveal the full 6D phase-space information of thousands of halo stars. In this review, I summarize the discoveries of stellar halo streams made so far and give a theoretical overview over the search strategies imployed. This article is intended as an introduction to researchers new to the field, but also as a reference illustrating the achievements made so far. I conclude that disentangling the individual fragments from which the Milky Way was built requires more precise data that will ultimately be delivered by the Gaia mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号