首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

2.
Estuarine salinity distributions reflect a dynamic balance between the processes that control estuarine circulation. At seasonal and longer time scales, freshwater inputs into estuaries represent the primary control on salinity distribution and estuarine circulation. El Niño-Southern Oscillation (ENSO) conditions influence seasonal rainfall and stream discharge patterns in the Tampa Bay, Florida region. The resulting variability in freshwater input to Tampa Bay influences its seasonal salinity distribution. During El Niño events, ENSO sea surface temperature anomalies (SSTAs) are significantly and inversely correlated with salinity in the bay during winter and spring. These patterns reflect the elevated rainfall over the drainage basin and the resulting elevated stream discharge and runoff, which depress salinity levels. Spatially, the correlations are strongest at the head of the bay, especially in bay sections with long residence times. During La Niña conditions, significant inverse correlations between ENSO SSTAs and salinity occur during spring. Dry conditions and depressed stream discharge characterize La Niña winters and springs, and the higher salinity levels during La Niña springs reflect the lower freshwater input levels.  相似文献   

3.
4.
A one-dimensional, hydrodynamical model of the Tamar Estuary shows good agreement with measured tidal elevations and currents. Computed currents are used to drive a one-dimensional moving-element model of the salt balance. The moving-element model overcomes the numerical difficulties associated with strong tidal advection. Axial distributions of salinity at high water, computed using the moving-element model, compare well with measurements. The modelled and observed high water salinity distributions in this macrotidal estuary show little dependence on tidal range. The major variability in salinity is due to runoff. This strong and rapid dependence on runoff is a consequence of short residence (or flushing) times. Typically, residence times are less than one day throughout the year in the upper 10 km of estuary. The residence times maximize in summer, reaching 14 d for the whole estuary. During high runoff winter periods residence times are less than 5 d. Mixing coefficients for the moving-element salinity model are deduced from salinity measurements. Dispersion coefficients at fixed locations along the estuary are deduced from solutions of the salinity model. The spatially-averaged coefficients at mean spring and neap tides are 180 and 240 m2 s?1, respectively, for average runoff. Therefore, spring-neap variations in dispersion are fairly small and show a negative correlation with tidal range. The spatially-averaged dispersion coefficients at mean tides vary from 150 to 300 m2 s?1 for typical summer and winter runoff, respectively. The increase in dispersion with runoff and the decrease with tidal range implies that buoyancy-driven currents generate an important component of the shear dispersion in this estuary.  相似文献   

5.
The longitudinal distribution of total suspended matter and total, dissolved, and particulate manganese in a small coastal plain estuary is described. The distribution of manganese is a consequence of estuarine circulation; a within-estuary maximum is inversely correlated with river flow, and is a function of residence time in the estuary, resuspension in the upper estuary, and desorption from particles introduced from within the estuary or from the river. The turbidity maximum is similarly most pronounced during low river flows. The upper estuary (salinity <15‰), comprising a small percentage of the total estuary volume during low flow, receives material from the river and along the bottom from the lower estuary; this material is returned to the water column by resuspension and desorption from estuarine and riverine particles. The lower estuary tends to damp out these processes because of the greater volume and (residence) time available for mixing.  相似文献   

6.
Natural Pb-isotope variability in the oceans encodes information about the sources of continental material to the oceans, about ocean circulation, and about Pb removal. In order to use this information, we must understand the natural cycle of Pb in the oceans, which is overprinted by large anthropogenic input. In this study we use 210Pb, which has not been significantly anthropogenically perturbed, to investigate oceanic Pb. GEOSECS 226Ra and model-derived atmospheric fluxes of 210Pb are used to input 210Pb into an ocean general circulation model. Irreversible scavenging of this 210Pb onto settling biogenic particles and at the seafloor are tuned so that the model replicates the observed pattern of 210Pb in the oceans. The best-fit model run provides a map of the variability of residence time for Pb. The global average residence time of Pb in this model is 48 yr, but there is over an order of magnitude variation between areas of high and low productivity. This is expected to enhance provinciality of Pb isotope ratios in the oceans. Because stable Pb isotopes are expected to behave in seawater in a similar fashion to 210Pb, the pattern of removal of 210Pb derived by the model can be used to investigate the behavior of stable Pb isotopes. We use a simplified input of Pb consisting of five point sources representing major rivers and a disseminated dust input. Although this simplified input scheme does not allow precise reconstruction of Pb concentration and isotopes in the oceans, it allows us to answer some first-order questions about the behavior of Pb as an ocean tracer. With a total Pb input of 6.3 × 107 mol/yr (Chow T. J. and Patterson C. C., “The occurrence and significance of Pb isotopes in pelagic sediments,” Geochim. Cosmochim. Acta26, 263-308, 1962), the model predicts natural seawater Pb concentrations averaging 2.2 pmol/kg. Even in the absence of anthropogenic input, the model ocean exhibits a near-surface maximum in Pb concentration. And the model suggests natural Pb concentrations in the Northern Hemisphere an order of magnitude higher than in the Southern Hemisphere. A point source of Pb is suggested to dominate the seawater Pb inventory close to the source but is reduced to typically less than 10% of the inventory by the time that Pb is advected out of the originating ocean. This length scale of advection for Pb isotope signals confirms their potential as tracers of ocean circulation. Assuming an 8% dissolution of dust, their input to the open ocean are seen to be a significant portion of Pb inventory throughout the oceans and make up >50% of the Pb inventory in the model’s Southern Ocean. Finally, a preliminary investigation of the response of Pb-isotope distributions to changes in boundary conditions between glacial and interglacial times illustrates that significant variation in the Pb isotopes are expected in some regions, even for reasonably small changes in climate conditions.  相似文献   

7.
Lagrangian retention and flushing are examined by advecting neutrally buoyant point particles within a circulation field generated by a numerical ocean model of Tampa Bay. Large temporal variations in Lagrangian residence time are found under realistic changes in boundary conditions. Two 90-day time periods are examined. The first (P1) is characterized by low freshwater inflow and weak baroclinic circulation. The second (P2) has high freshwater inflow and strong baroclinic circulation. At the beginning of both time periods, 686,400 particles are released uniformly throughout the bay. Issues relating to particle distribution and flushing are examined at three different spatial scales: (1) at the scale of the entire bay, (2) the four major regions within the bay, and (3) at the scale of individual model grid cells. Two simple theoretical models for the particle number over time, N(t), are fit to the particle counts from the ocean model. The theoretical models are shown to represent N(t) reasonably well when considering the entire bay, allowing for straightforward calculation of baywide residence times: 156 days for P1 and 36 days for P2. However, the accuracy of these simple models decreases with decreasing spatial scale. This is likely due to the fact that particles may exit, reenter, or redistribute from one region to another in any sequence. The smaller the domain under consideration, the more this exchange process dominates. Therefore, definitions of residence time need to be modified for “non-local” situations. After choosing a reasonable definition, and removal of the tidal and synoptic signals, the residence times at each grid cell in P1 is found to vary spatially from a few days to 90 days, the limit of the calculation, with an average residence time of 53 days. For P2, the overall spatial pattern is more homogeneous, and the residence times have an average value of 26 days.  相似文献   

8.
A combination of mixing plots, one-dimensional salt balance modelling, nutrient loading budgets, and benthic flux measurements were used to assess nutrient cycling pathways in the enriched sub-tropical Brunswick estuary during different freshwater flows. A simple model accounting for freshwater residence times and nutrient availability was found to be a good predictor of phytoplankton biomass along the estuary, and suggested that biomass accumulation may become nutrient-limited during low flows and that recycling within the water column is important during blooms. Dissolved inorganic nitrogen (DIN) cycling budgets were constructed for the estuary during different freshwater flows accounting for all major inputs (catchment, sewage, and urban) to the estuary. Internal cycling due to phytoplankton uptake (based on measured biomass) and sediment-water fluxes (based on measured rates in each estuarine reach) was considered. Four different nutrient cycling states were identified during the study. In high flow, freshwater residence times are less than 1 d, internal cycling processes are bypassed and virtually all dissolved, and most particulate, nutrients are delivered to the continental shelf. During the growth phase of a phytoplankton bloom enhanced recycling occurs as residence times increase sufficiently to allow biomass accumulation. Remineralization of phytoplankton detritus during this phase can supply up to 50% of phytoplankton DIN demands. In post-bloom conditions, DIN uptake by phytoplankton decreases in the autumn wet season when biomass doubling times begin to exceed residence times. OM supply to the sediments diminishes and the benthos becomes nutrient-limited, resulting in DIN uptake by the sediments. As flows decrease further in the dry season, there is tight recycling and phytoplankton blooms, and uptake by the sediments can account for the entire DIN loading to the estuary resulting in complete removal of DIN from the water column. The ocean is a potentially important source of DIN to the estuary at this time. The results of the DIN cycling budgets compared favorably with mixing plots of DIN at each time. The results suggest that a combination of different approaches may be useful in developing a more comprehensive understanding of nutrient cycling behavior and the effects of nutrient enrichment in estuaries.  相似文献   

9.
Compacted bentonite blocks have been heated and hydrated in a stainless steel cell in order to simulate, in the laboratory, the conditions of the clay barrier in a high-level radioactive waste repository. Temperature distributions at different times, rate of hydration, final water content and dry density have been measured. Some chemical parameters, as electrical conductivity in an aqueous extractable amorphous silica, have also been obtained. For the periods of time considered (up to 2500 h), the hydration process is not affected by the thermal gradient, the high suction of the bentonite being the critical factor in the initial water uptake of the clay barrier. A remarkable saline environment has been detected near the heater, due to salt migration towards dried areas. This phenomenon should be taken into account in further investigations of the mechanical and geochemical behaviour of the clay barrier.  相似文献   

10.
《Chemical Geology》2004,203(1-2):51-73
The internal fluid circulation of the Tahiti barrier reef has been studied with Sr isotopes and pore water chemistry. The study is based on 15 sample series recovered over 2 years from a 150-m deep core drilled through the entire barrier reef down to the volcanic basement.Temperature data suggest that the interstitial fluids originate from seawater that penetrated the volcanic basement to at least 200 m depth on the ocean-sided slope below the barrier reef. Subsequently, the fluids migrated upward driven by buoyancy through the entire reef.Chemical evolution of the interstitial fluids is mainly controlled by basalt–seawater interaction and by admixture of seawater from the open ocean during upward migration. These processes are monitored with 87Sr/86Sr isotope ratios, H4SiO4 concentrations and alkalinity to give a picture of the evolution of interstitial fluid flow over 2 years. The results indicate that the internal circulation patterns change through time. The modifications concern mainly the residence time of the fluids within the volcanics and the intensity and localization of lateral seawater admixture within the karstified Pleistocene reef.  相似文献   

11.
Capillary gas chromatography-mass spectrometry (C-GC-MS) and Iatroscan thin layer chromatography-flame ionisation detection (TLC-FID) were used to study hydrocarbon distributions in a sediment core from Ace Lake, a saline, meromictic lake in the Vestfold Hills of Antarctica. Hydrocarbons were abundant in most core sections (up to 125/μg/g dry wt), particularly in near-surface samples, and the distributions were very complex. Major constituents were identified as phytane, 2,6,10,15,19-pentamethyleicosane, tetrahydrosqualene, a mixture of phytenes, cholesta-3,5-diene and fern-7-ene. Smaller amounts of sterenes and hopenes were also present. The predominance of the first 3 acyclic isoprenoids in sediments buried less than 30 cm is consistent with high populations of methanogenic bacteria known to be present.Phytenes were abundant in all core sections, and there was no relationship between their abundance and that of phytane which suggests that they were not derived from methanogenic bacteria. Phytadienes were minor constituents at all depths studied. An unusual feature of some distributions was the high concentrations of fern-7-ene which was the major hydrocarbon in the 20–25 cm core section. This alkene was only abundant in sediments which contained high concentrations of methanogen markers suggesting that it may also be indicative of anoxic depositional environments. A possible source might be from purple non-sulphur bacteria. High concentrations of straight-chain C29 and C34 alkenes were also found in these sediments but their origin has not been determined. Major changes in the hydrocarbon distributions with depth indicate that the depositional environment in the lake has altered dramatically since the lake was formed less than 8000 years ago. The present condition of permanent anoxic bottom waters probably developed only in the last 1000 years.  相似文献   

12.
水分循环与气候背景   总被引:6,自引:1,他引:5       下载免费PDF全文
张家诚 《水科学进展》1999,10(3):265-270
指出水分循环的关键在于海洋通过大气向大陆输送水分。水分循环的基本环节,都同气候有密切关系。夏季风在输送水分中有极其重要的作用,季风环流的高变率是水分循环高变率的重要原因之一,论述了厄尔尼诺与全球增温等气候变化现象对水分循环的复杂影响过程,指出现代水荒是人类活动对气候变化影响的主要结果之一,人类根据自然规律,能够调控好自己与自然界的关系,保证正常的水分循环,解决现代水荒问题。  相似文献   

13.
Volcanic islands, being characterized by highly porous basaltic/andesitic lava flows and pyroclastic deposits, are subject to important chemical weathering by subsurface waters. Moreover, such subsurface weathering is impacted by hydrothermal springs in both active and non-active volcanic areas, thus increasing dissolved load concentrations. Here, we focus on the subsurface water chemistry in the volcanic islands of the Lesser Antilles and Réunion and on the origin of these subsurface flows. We are able, through the use of various isotopic tools (C, Sr, U–Th), to identify hydrothermal influences in river water. For example, Li concentrations show a positive correlation with temperature of hot and cold springs and also a relationship with δ13C; from this, we can show that several sources of hydrothermal activity influence the rivers of the Lesser Antilles and that some rivers also reveal an important organic influence. As much as 20% of the subsurface hydrothermal springs go to feed the rivers. The increasing temperatures result in more dissolved elements being mobilized and an increase in chemical weathering rates. In addition, using the (230Th/238U) isochron for the well and river dissolved loads in Martinique, Guadeloupe and Réunion, we can evaluate residence times in the river water, i.e. the average residence time in the water along the circulation path to the sampling point. Alteration takes longer when the water circulates through thick soil, for example, 400–5,000 years when circulating under an ash profile and 1,200–15,000 years when circulating through a collapse zone. It would appear that waters circulation is globally three times longer for subsurface water than for surficial water. The weathering regime in tropical volcanic environments seems to be controlled mainly by such subsurface circulation with high chemical concentration from hydrothermal inputs. The origin of these compositions is varied and not controlled by a single hydrothermal spring. Consequently, it is subsurface circulation that determines the weathering regime in tropical volcanic islands with the main controlling parameters being temperature and residence time.  相似文献   

14.
In a 2,700-km2 area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N2 gas data indicated that denitrification has eliminated >5 mg/L NO3–N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use.  相似文献   

15.
The city of Bath is a World Heritage site and its thermal waters, the Roman Baths and new spa development rely on undisturbed flow of the springs (45 °C). The current investigations provide an improved understanding of the residence times and flow regime as basis for the source protection. Trace gas indicators including the noble gases (helium, neon, argon, krypton and xenon) and chlorofluorocarbons (CFCs), together with a more comprehensive examination of chemical and stable isotope tracers are used to characterise the sources of the thermal water and any modern components. It is shown conclusively by the use of 39Ar that the bulk of the thermal water has been in circulation within the Carboniferous Limestone for at least 1000 years. Other stable isotope and noble gas measurements confirm previous findings and strongly suggest recharge within the Holocene time period (i.e. the last 12 kyr). Measurements of dissolved 85Kr and chlorofluorocarbons constrain previous indications from tritium that a small proportion (<5%) of the thermal water originates from modern leakage into the spring pipe passing through Mesozoic valley fill underlying Bath. This introduces small amounts of O2 into the system, resulting in the Fe precipitation seen in the King’s Spring. Silica geothermometry indicates that the water is likely to have reached a maximum temperature of between 69–99 °C, indicating a most probable maximum circulation depth of ∼3 km, which is in line with recent geological models. The rise to the surface of the water is sufficiently indirect that a temperature loss of >20 °C is incurred. There is overwhelming evidence that the water has evolved within the Carboniferous Limestone formation, although the chemistry alone cannot pinpoint the geometry of the recharge area or circulation route. For a likely residence time of 1–12 kyr, volumetric calculations imply a large storage volume and circulation pathway if typical porosities of the limestone at depth are used, indicating that much of the Bath-Bristol basin must be involved in the water storage.  相似文献   

16.
《Applied Geochemistry》2004,19(4):519-560
The hydrogeochemistry of the Lac du Bonnet granitic batholith has been determined for the region of the Whiteshell Research Area (WRA) in southeastern Manitoba, Canada. This work forms part of the geosciences studies performed for the Canadian Nuclear Fuel Waste Management Program over the period 1980–1995 by Atomic Energy of Canada Limited (AECL). Knowledge of the variation of groundwater chemistry and its causes is useful in assessing the performance and safety of a nuclear fuel waste vault located at depths of up to 1000 m in a crystalline rock formation of the Canadian Shield. Groundwaters and matrix pore fluids have been obtained by standard sampling methods from shallow piezometers in clay-rich overburden, from packer-isolated borehole zones intersecting fractures or fault zones in the bedrock, and from boreholes in unfractured rock in AECL's Underground Research Laboratory (URL). Eighty-six individual fracture groundwaters have been sampled and analysed from permeable zones in 53 boreholes drilled to depths of up to 1000 m in the Lac du Bonnet batholith. In addition, 28 groundwaters from piezometers in a large wetland area near the URL have been sampled and analysed to determine the influence of clay-rich overburden on the bedrock hydrogeochemistry. Analyses have been made for major and minor ions, pH, Eh, trace metals, and stable and radioactive isotopes, to characterise these groundwaters and relate them to their hydrogeologic regimes. Shallow groundwaters in the fractured bedrock are generally dilute (TDS <0.3 g/l), Ca–Na–HCO3 waters and show little indication of mixing with Ca–Mg–HCO3–SO4 groundwater from overburden sediments. The near-modern levels of 3H and 14C, and a warm-climate 2H/18O signature in these groundwaters, indicates that the upper ∼200 m of fractured bedrock contains an active groundwater circulation system with a residence time of tens to hundreds of years. Deeper fracture groundwaters (200–400 m depth) in recharge areas, are more alkaline, Na–Ca–HCO3 waters and evolve to Na–Ca–HCO3–Cl–SO4 waters with increasing distance along the flow path. Isotopic data indicate the presence of a glacial melt-water component suggesting that the residence times of these waters are 103–105 a. These waters form a transition zone between the upper, advective flow regime and a deeper regime in sparsely fractured rock where groundwater in fractures and fracture zones is largely stagnant. At these depths (> 500 m), Na–Ca–Cl–SO4 waters of increasing salinity (up to 50 g/l) with depth are found and in some fractures the waters have evolved to a Ca–Na–Cl composition. Isotopic data indicate that these waters are warm-climate and pre-glacial in origin, with residence times of over 1 Ma. Pore fluids observed to drain from the unfractured rock matrix in the URL facility are almost pure Ca–Cl in composition, ∼90 g/l salinity, and have a 2H/18O composition displaced well to the left of the global meteoric water line, about which all other WRA groundwaters lie. This information indicates that these pore fluids have undergone prolonged water-rock interaction and have residence times of 101–103 Ma. Most of the deeper fracture groundwaters and pore fluids have low Br/Cl ratios and moderate to high δ34S values of dissolved SO4 which indicates that their salinity could be derived from a marine source such as the basinal sedimentary brines and evaporites to the west of the batholith. These fluids may have entered the batholith during early Paleozoic times when sedimentary rocks were deposited over the granite and were driven by a hydraulic gradient resulting from higher ground in western Canada. The hydrogeochemical data and interpretations show that below ∼500 m in the WRA, fracture-hosted groundwaters are very saline, reducing and old, and are, therefore, indicative of stagnant conditions over the period of concern for nuclear waste disposal (1 Ma). The intact rock matrix at these depths is extremely impermeable as indicated by the presence of pore fluids with unusual geochemical and isotopic characteristics. The pore fluids may represent basinal brines that have evolved geochemically and isotopically to their current composition over periods as long as 103 Ma.  相似文献   

17.
The Songshan hot spring occurs in granite in Yanqing County in northwestern Beijing, China. TDS of the hot water ranges from 459 to 475 mg/L and pH varies between 8.6 and 9.13. The water is of Na–SO4 type. Isotopic analyses indicate that the hot spring is meteoric in origin and receives recharge from precipitation in the northern and northwestern granite mountain with elevation of about 1,600–1,800 m. The depth of circulation of the thermal groundwater is estimated to be 2,240 m below the spring’s threshold and the temperature of the geothermal reservoir, 76°C. The residence time of the thermal groundwater is estimated to be about 52 years. A flowing well near the spring has chemical compositions and formation conditions similar to the spring. The discharge of the flowing well is approximately eighteen times larger than that of the spring and the residence time of the former (about 15.4 years) is about three times smaller than that of the latter. Although the well and spring are close to each other, the well’s larger flow rates, indicated residence time and high hydraulic head suggest that the well taps a separate, but genetically similar flow system.  相似文献   

18.
The diffusive relaxation of trace element profiles in plagioclase phenocrysts may provide important constraints on magma residence times in crustal magma chambers. Initial trace element profiles in plagioclase phenocrysts are governed by variations in the concentration of a trace element in the melt and by the plagioclase-melt partition coefficient. Trace element diffusion will subsequently act to modify this initial profile and – given enough time – produce a profile that is in equilibrium with the anorthite variations within the crystal. We argue that the trace element partition coefficient Da/b between two parts a and b of a plagioclase crystal of variable anorthite content is equal to the ratio of their crystal-liquid partition coefficients, and that the equilibrium profile of the crystal can be calculated. The time required to establish diffusive equilibrium is dependent on the wavelength and amplitude of the initial trace element concentration range and on the diffusivity of the trace element in plagioclase. Strontium plagioclase-melt partition coefficients and diffusivities are calculated for a range of magmatic temperatures and plagioclase compositions. A one-dimensional diffusion model is developed that describes the diffusive destruction of oscillatory trace element zoning with time and allows the calculation of upper limits for plagioclase crystal residence times in a magma reservoir. The model is tested using major and trace element concentrations measured along crystal traverses of plagioclase phenocrysts from the Kameni Island dacites, Santorini, and from the 1979 Soufriere andesite, St. Vincent. Three out of eight plagioclase phenocrysts have Sr concentration profiles that are not in diffusive equilibrium. For these, the diffusion model is employed to calculate maximum crystal residence times from incomplete diffusive equilibration of trace element zoning in plagioclase. Maximum crystal residence times range from 100 to 450 years. This is in good agreement with estimates from crystal size distribution and from Ra-Th disequilibrium studies for the Kameni Islands. For Soufriere, however, such short residence times are incompatible with U-Th mineral errorchron data that suggest residence times of >40 ka in a thermally buffered magma reservoir. To reconcile these apparently different ages, we invoke a more complicated magmatic history for Soufriere where an initially buffered magma reservoir is disturbed by magma mixing and suffers limited additional crystal fractionation prior to eruption. Received: 20 October 1998 / Accepted: 22 March 1999  相似文献   

19.
Stable isotopes (δ18O, δ2H), tritium (3H), and helium isotopes (3He, 4He) were used for evaluating groundwater recharge sources, flow paths, and residence times of three watersheds in the Cape Verde Islands (West Africa). Stable isotopes indicate the predominance of high-elevation precipitation that undergoes little evaporation prior to groundwater recharge. In contrast to other active oceanic hotspots, environmental tracers show that deep geothermal circulation does not strongly affect groundwater. Low tritium concentrations at seven groundwater sites indicate groundwater residence times of more than 50 years. Higher tritium values at other sites suggest some recent recharge. High 4He and 3He/4He ratios precluded 3H/3He dating at six sites. These high 3He/4He ratios (R/Ra values of up to 8.3) are consistent with reported mantle derived helium of oceanic island basalts in Cape Verde and provided end-member constraints for improved dating at seven other locations. Tritium and 3H/3He dating shows that São Nicolau Island’s Ribeira Fajã Basin has groundwater residence times of more than 50 years, whereas Fogo Island’s Mosteiros Basin and Santo Antão Island’s Ribeira Paul Basin contain a mixture of young and old groundwater. Young ages at selected sites within these two basins indicate local recharge and potential groundwater susceptibility to surface contamination and/or salt-water intrusion.  相似文献   

20.
Long Island Sound (LIS), a large urban estuary in the northeastern USA, receives freshwater from many rivers along its northern shore. The size of these rivers varies widely in terms of basin area and discharge. The Regional Ocean Modeling System (ROMS) was applied with conservative passive tracers to identify the distribution, mixing, freshwater residence times, and storm response for all of LIS’s river systems during the summer of 2013. A watershed model was applied to overcome the lack of adequate river discharge observations for coastal watersheds. The Connecticut River was the largest contributor to riverine freshwater throughout the estuary despite its entry point near the mouth. The Connecticut River strengthened bulk stratification in the eastern LIS the most but acted to weaken stratification near the mouths of other rivers and in far western LIS by freshening waters at depth. The Housatonic and Hudson Rivers had the strongest influence on stratification in central and western LIS, respectively. Smaller coastal rivers were the most influential in strengthening stratification near the southwestern Connecticut shoreline. The influence of small coastal rivers was amplified after a major storm due to shorter storm response times relative to the larger rivers. Overall, river water was close to a well-mixed state throughout LIS, but more stratified near river mouths. Freshwater residence time estimates, meanwhile, indicated monthly to multi-seasonal time scales (43 to 180 days) and grew longer with greater distance from the LIS mouth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号