首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations including spatial–temporal rainfall scenarios and single-site temperature and potential evapotranspiration scenarios for hydrological impact assessment in the Dommel catchment (1,350 km2) in The Netherlands and Belgium. A multi-site stochastic rainfall model combined with a rainfall conditioned weather generator have been used for the first time with the change factor approach to downscale projections of change derived from eight Regional Climate Model (RCM) experiments for the SRES A2 emission scenario for the period 2071–2100. For winter, all downscaled scenarios show an increase in mean daily precipitation (catchment average change of +9% to +40%) and typically an increase in the proportion of wet days, while for summer a decrease in mean daily precipitation (−16% to −57%) and proportion of wet days is projected. The range of projected mean temperature is 7.7°C to 9.1°C for winter and 19.9°C to 23.3°C for summer, relative to means for the control period (1961–1990) of 3.8°C and 16.8°C, respectively. Mean annual potential evapotranspiration is projected to increase by between +17% and +36%. The magnitude and seasonal distribution of changes in the downscaled climate change projections are strongly influenced by the General Circulation Model (GCM) providing boundary conditions for the RCM experiments. Therefore, a multi-model ensemble of climate change scenarios based on different RCMs and GCMs provides more robust estimates of precipitation, temperature and evapotranspiration for hydrological impact assessments, at both regional and local scale.  相似文献   

2.
未来20年中国气温变化预估   总被引:18,自引:6,他引:12       下载免费PDF全文
利用大约40余个气候模式和模式集合,考虑多种人类排放情景,预估到2025年前相对于1961-1990年中国的气温变化。只考虑未来人类排放增加多模式集成预估结果表明,中国年平均气温自2006到2025年的20 a期间将继续变暖0.55 ℃,至2010年年平均气温平均变暖大约为1.08 ℃(平均变暖范围为 0.73-1.54 ℃),至2020年年平均变暖约为1.43 ℃(平均变暖范围为1.10-2.09 ℃),至2025年平均变暖约为1.39 ℃(平均变暖范围为0.94-2.19 ℃)。 对1990-2005年已经出现观测事实的近16 a气候模式预估结果进行检验表明,多模式考虑多种排放情景集成,一致预估出这16 a的明显变暖趋势,但是变暖幅度略低于实际观测值。经检测证实,对2006-2025年中国气温的预估具有一定的可信度。需要指出的是,目前的预估没有考虑未来的自然变化,只考虑人类排放继续增加的影响。  相似文献   

3.
In the Atacama Desert, the narrow littoral plain and the adjacent mountain range have a unique climate. This area is locally called the “coastal desert with abundant cloudiness”, and extends from the coastline up to an elevation of 1000 m. The climate is designated as being BWn according to Köppen's Climate Classification as adapted for Chile. In the original classification the acronym (Bn) is used for foggy environments. Toward the east a “normal desert” climate (BW) is found. This is known as one of the most extreme deserts of the world. In the BWn areas there are meteorological differences between low and high elevation zones. The climate of the coastal plains and the mountains is described in this paper in order to show that there is an area where the climate differs from those classified as BWn and BW in the Chilean Climate Classification. This area is located between 650 and 1200 m a.s.l. and contains several fog oases or lomas vegetation, rich in biodiversity and endemism.The weather is warmer near sea level, with an annual average temperature of 18 °C. At high elevation sites like Alto Patache, the temperature decreases at a rate of 0.7 °C for every 100-m increase in altitude. The average annual minimum temperature often approaches 1 °C in winter, while the mean annual temperature range is significant (8.3 °C in Los Cóndores). The mean monthly relative humidity in Alto Patache is over 80%, except during the summer months. During autumn, winter and spring high elevation fog is present in the study area at altitudes ranging from 650 m up to 1060 m, giving annual water yields of 0.8 to 7 L m− 2 day− 1. If vegetation is used as an indicator, the foggy zone lies between 650 m a.s.l. and 1200 m a.s.l. About 70% of the mountain range experiences the foggy climate, as opposed to the coastal plains that are characterized by a cloudy climate.  相似文献   

4.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   

5.
This study examines the projections of hydroclimatic regimes and extremes over Andean basins in central Chile (~ 30–40° S) under a low and high emission scenarios (RCP2.6 and RCP8.5, respectively). A gridded daily precipitation and temperature dataset based on observations is used to drive and validate the VIC macro-scale hydrological model in the region of interest. Historical and future simulations from 19 climate models participating in CMIP5 have been adjusted with the observational dataset and then used to make hydrological projections. By the end of the century, there is a large difference between the scenarios, with projected warming of ~ + 1.2 °C (RCP2.6), ~ +?3.5 °C (RCP8.5) and drying of ~ ? 3% (RCP2.6), ~ ? 30% (RCP8.5). Following the strong drying and warming projected in this region under the RCP8.5 scenario, the VIC model simulates decreases in annual runoff of about 40% by the end of the century. Such strong regional effect of climate change may have large implications for the water resources of this region. Even under the low emission scenario, the Andes snowpack is projected to decrease by 35–45% by mid-century. In more snowmelt-dominated areas, the projected hydrological changes under RCP8.5 go together with more loss in the snowpack (75–85%) and a temporal shift in the center timing of runoff to earlier dates (up to 5 weeks by the end of the century). The severity and frequency of extreme hydroclimatic events are also projected to increase in the future. The occurrence of extended droughts, such as the recently experienced mega-drought (2010–2015), increases from one to up to five events per 100 years under RCP8.5. Concurrently, probability density function of 3-day peak runoff indicates an increase in the frequency of flood events. The estimated return periods of 3-day peak runoff events depict more drastic changes and increase in the flood risk as higher recurrence intervals are considered by mid-century under RCP2.6 and RCP8.5, and by the end of the century under RCP8.5.  相似文献   

6.
This paper presents probable effects of climate change on soil moisture availability in the Southeast Anatolia Development Project (GAP) region of Turkey. A series of hypothetical climate change scenarios and GCM-generated IPCC Business-as-Usual scenario estimates of temperature and precipitation changes were used to examine implications of climate change for seasonal changes in actual evapotranspiration, soil moisture deficit, and soil moisture surplus in 13 subregions of the GAP. Of particular importance are predicted patterns of enhancement in summer soil moisture deficit that are consistent across the region in all scenarios. Least effect of the projected warming on the soil moisture deficit enhancement is observed with the IPCC estimates. The projected temperature changes would be responsible for a great portion of the enhancement in summer deficits in the GAP region. The increase in precipitation had less effect on depletion rate of soil moisture when the temperatures increase. Particularly southern and southeastern parts of the region will suffer severe moisture shortages during summer. Winter surplus decreased in scenarios with increased temperature and decreased precipitation in most cases. Even when precipitation was not changed, total annual surplus decreased by 4 percent to 43 percent for a 2°C warming and by 8 percent to 91 percent for a 4°C warming. These hydrologic results may have significant implications for water availability in the GAP as the present project evaluations lack climate change analysis. Adaptation strategies – such as changes in crop varieties, applying more advanced dry farming methods, improved water management, developing more efficient irrigation systems, and changes in planting – will be important in limiting adverse effects and taking advantage of beneficial changes in climate.  相似文献   

7.
Probabilistic climate change projections using neural networks   总被引:5,自引:0,他引:5  
Anticipated future warming of the climate system increases the need for accurate climate projections. A central problem are the large uncertainties associated with these model projections, and that uncertainty estimates are often based on expert judgment rather than objective quantitative methods. Further, important climate model parameters are still given as poorly constrained ranges that are partly inconsistent with the observed warming during the industrial period. Here we present a neural network based climate model substitute that increases the efficiency of large climate model ensembles by at least an order of magnitude. Using the observed surface warming over the industrial period and estimates of global ocean heat uptake as constraints for the ensemble, this method estimates ranges for climate sensitivity and radiative forcing that are consistent with observations. In particular, negative values for the uncertain indirect aerosol forcing exceeding –1.2 Wm–2 can be excluded with high confidence. A parameterization to account for the uncertainty in the future carbon cycle is introduced, derived separately from a carbon cycle model. This allows us to quantify the effect of the feedback between oceanic and terrestrial carbon uptake and global warming on global temperature projections. Finally, probability density functions for the surface warming until year 2100 for two illustrative emission scenarios are calculated, taking into account uncertainties in the carbon cycle, radiative forcing, climate sensitivity, model parameters and the observed temperature records. We find that warming exceeds the surface warming range projected by IPCC for almost half of the ensemble members. Projection uncertainties are only consistent with IPCC if a model-derived upper limit of about 5 K is assumed for climate sensitivity.  相似文献   

8.
We compare changes in low birth weight and child malnutrition in 13 African countries under projected climate change versus socio-economic development scenarios. Climate scenarios are created by linking surface temperature gradients with declines in seasonal rainfall sea along with warming values of 1 °C and 2 °C. Socio-economic scenarios are developed by assigning regionally specific changes in access to household electricity and mother's education. Using these scenarios, in combination with established models of children's health, we investigate and compare the changes in predicted health outcomes. We find that the negative effects of warming and drying on child stunting could be mitigated by positive development trends associated with increasing mothers’ educational status and household access to electricity. We find less potential for these trends to mitigate how warming and drying trends impact birth weights. In short, under warming and drying, the risk of more malnourished children is greater than the risk of more children with low birth weights, but increases in child malnutrition could be averted in regions that increase access to educational resources and basic infrastructure.  相似文献   

9.
Philip Camill 《Climatic change》2005,68(1-2):135-152
Permafrost covers 25% of the land surface in the northern hemisphere, where mean annual ground temperature is less than 0°C. A 1.4–5.8 °C warming by 2100 will likely change the sign of mean annual air and ground temperatures over much of the zones of sporadic and discontinuous permafrost in the northern hemisphere, causing widespread permafrost thaw. In this study, I examined rates of discontinuous permafrost thaw in the boreal peatlands of northern Manitoba, Canada, using a combination of tree-ring analyses to document thaw rates from 1941–1991 and direct measurements of permanent benchmarks established in 1995 and resurveyed in 2002. I used instrumented records of mean annual and seasonal air temperatures, mean winter snow depth, and duration of continuous snow pack from climate stations across northern Manitoba to analyze temporal and spatial trends in these variables and their potential impacts on thaw. Permafrost thaw in central Canadian peatlands has accelerated significantly since 1950, concurrent with a significant, late-20th-century average climate warming of +1.32 °C in this region. There were strong seasonal differences in warming in northern Manitoba, with highest rates of warming during winter (+1.39 °C to +1.66 °C) and spring (+0.56 °C to +0.78 °C) at southern climate stations where permafrost thaw was most rapid. Projecting current warming trends to year 2100, I show that trends for north-central Canada are in good agreement with general circulation models, which suggest a 4–8 °C warming at high latitudes. This magnitude of warming will begin to eliminate most of the present range of sporadic and discontinuous permafrost in central Canada by 2100.  相似文献   

10.
We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere- Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor’s skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are +1.54°C/+1.92°C for RCP2.6, +1.68°C/+2.91°C for RCP4.5, +1.17°C/+3.11°C for RCP6.0, and +1.75°C/+4.73°C for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.  相似文献   

11.
In West Africa, agriculture, mainly rainfed, is a major economic sector and the one most vulnerable to climate change. A meta-database of future crop yields, built up from 16 recent studies, is used to provide an overall assessment of the potential impact of climate change on yields, and to analyze sources of uncertainty.Despite a large dispersion of yield changes ranging from −50% to +90%, the median is a yield loss near −11%. This negative impact is assessed by both empirical and process-based crop models whereas the Ricardian approach gives very contrasted results, even within a single study. The predicted impact is larger in northern West Africa (Sudano-Sahelian countries, −18% median response) than in southern West Africa (Guinean countries, −13%) which is likely due to drier and warmer projections in the northern part of West Africa. Moreover, negative impacts on crop productivity increase in severity as warming intensifies, with a median yield loss near −15% with most intense warming, highlighting the importance of global warming mitigation.The consistently negative impact of climate change results mainly from the temperature whose increase projected by climate models is much larger relative to precipitation change. However, rainfall changes, still uncertain in climate projections, have the potential to exacerbate or mitigate this impact depending on whether rainfall decreases or increases. Finally, results highlight the pivotal role that the carbon fertilization effect may have on the sign and amplitude of change in crop yields. This effect is particularly strong for a high carbon dioxide concentration scenario and for C3 crops (e.g. soybean, cassava). As staple crops are mainly C4 (e.g. maize, millet, sorghum) in WA, this positive effect is less significant for the region.  相似文献   

12.
Projections of Climate Change over China for the 21st Century   总被引:3,自引:0,他引:3       下载免费PDF全文
1. IntroductionUnder the background of global warming in the20th century, it was also getting warmer of 0.2-0.7°C/100 yr over China for the last 100 years, espe-cially for the last 50 years (0.6-0.9°C/50 yr) based onthe instrumental observations (Wang and Gong, 2000;Ren et al., 2004; Zhao et al., 2004). In another way, itwas noticed that the concentration of greenhouse gasesand sulfate aerosols in the atmosphere increased by thehuman emissions. Some new evidences indicated thatthe greenho…  相似文献   

13.
Available observations suggest that some mountain regions are experiencing seasonal warming rates that are greater than the global land average. There is also evidence from observational and modeling studies for an elevation-dependent climate response within some mountain regions. Our understanding of climate change in mountains, however, remains challenging owing to inadequacies in observations and models. In fact, it is still uncertain whether mountainous regions generally are warming at a different rate than the rest of the global land surface, or whether elevation-based sensitivities in warming rates are prevalent within mountains. We review studies of four high mountain regions – the Swiss Alps, the Colorado Rocky Mountains, the Tibetan Plateau/Himalayas, and the Tropical Andes – to examine questions related to the sensitivity of climate change to surface elevation. We explore processes that could lead to enhanced warming within mountain regions and possible mechanisms that can produce altitudinal gradients in warming rates on different time scales. A conclusive understanding of these responses will continue to elude us in the absence of a more comprehensive network of climate monitoring in mountains.  相似文献   

14.
IPCC SROCC和AR6对高山区气候变化的评估表明,近期全球山地增暖速率提高,1980年代以来亚洲高山区增暖速率明显高于全球平均和其他高山区同期水平。各山地增暖普遍具有海拔依赖性,但机制复杂且区域差异大,除落基山脉未来气温增幅随海拔降低外,其余山地均随海拔有不同程度的升高。全球山地年降水在过去几十年没有明显趋势;预计未来北半球许多山地年降水将增加5%~20%,但极端降水变化的区域和季节差异较大,其中青藏高原喜马拉雅山脉极端降水频次和强度都将增大。山地年最大雪水当量的减少在固-液态降水转化的海拔高度带更强,未来山地降雪和积雪变化不仅与排放情景有关,而且与海拔高度密切相关。2010—2019年全球山地冰川物质亏损较有观测记录以来的任何一个10年都多,亚洲高山区虽然冰川物质亏损速率较小,但每年亏损的冰量在全球四大高山区中仅次于安第斯山脉南段。预计山地冰川将持续退缩数十年或数百年,未来亚洲高山区冰川退缩对海平面上升的贡献将居全球四大高山区之首。山地多年冻土温度升高、厚度减薄,预计未来多年冻土将加速退化,即使在低温室气体排放情景下,21世纪末青藏高原多年冻土面积预计也将减少13.4%~27.7%。从评估的完整性和信度水平来看,山地观测和研究仍存在巨大差距。  相似文献   

15.
16.
ABSTRACT

Present global climate models (GCMs) are unable to provide reliable projections of physical oceanographic properties on the continental shelf off Newfoundland and Labrador. Here we first establish linear statistical relationships between oceanographic properties and coastal air temperature based on historical observations. We then use these relationships to project future states of oceanographic conditions under different emission scenarios, based on projected coastal air temperatures from global (Canadian Earth System Model, version 2 (CanESM2), Geophysical Fluid Dynamics Laboratory's Earth System Model, version 2M (GFDL-ESM2M)) and regional (Canadian Regional Climate Model (CRCM)) climate models. Estimates based on CanESM2 agree reasonably well with observed trends, but the trends based on two other models result in substantial underestimates. Projected trends are closer to observations under a high emission scenario than under median-level emission scenarios. Over the next 50 years, the increases in projected sea surface temperature off eastern Newfoundland (Station 27) range from 0.4° to 2.2°C. The increases in bottom ocean temperature over the Newfoundland and Labrador Shelves range from 0.4° to 2.1°C. The area of the cold intermediate layer (<0°C) on the Flemish Cap (47°N) section is projected to decrease by 9–35% of the 1981–2010 average. The decline in sea-ice extent off Newfoundland and Labrador ranges from 20 to 77% of the average (0.4–1.5?×?105?km2), and the reduction in the number of icebergs at 48°N off Newfoundland ranges from 30% to nearly 100% of the norm at this latitude. Despite differences among the models and scenarios, statistical projections indicate that conditions in this region will reach or exceed their maxima (sea surface temperature, bottom ocean temperature) and reach or fall below their minima (sea-ice extent, number of icebergs) that were observed during the course of monitoring activities over the past 30–60 years, possibly as early as 2040. We note, however, that the statistical relationships based on historical data may not hold in the future because of the changing influence of input from Arctic waters and because of large uncertainties in projected air temperatures from GCMs.  相似文献   

17.
The effect of projected global climate change due to a doubling of atmospheric CO2 on water temperatures in five streams in Minnesota was estimated using a deterministic heat transport model. The model calculates heat exchange between the atmosphere and the water and is driven by climate parameters and stream hydrologic parameters. The model is most sensitive to air temperature and solar radiation. The model was calibrated against detailed measurements to account for seasonally variable shading and wind sheltering. Using climate projections from the GISS, GFDL and OSU GCMs as input; stream temperature simulations predict a warming of freely flowing river reaches by 2.4 °C to 4.7 °C when atmospheric CO2 doubles. In small shaded streams water temperatures are predicted to rise by an additional 6 °C in summer if trees along stream banks should be lost due to climate change or other human activities (e.g. logging). These projected water temperature changes have significant consequences for survival and growth of fishes. Simulation with the complete heat budget equations were also used to examine simplified water temperature/air temperature correlations.  相似文献   

18.
The factors which control the total flux of energy across a latitude belt in the atmosphere—ocean system are determined by comparing the flux resulting from various approximations with the observed flux, and by using a one-dimensional heat-balance climate model to calculate the sensitivity of the flux to the efficiency of the dynamical transports. The results show that, as long as a hemisphere is in equilibrium and as long as the structure of the atmosphere—ocean system is dominated by the planetary scale, the total flux is constrained to peak near 35° latitude, the flux per unit area to peak near 45° latitude, and the magnitude of the flux is determined primarily by the solar constant, the size of the earth, the tilt of the earth's axis, and the hemispheric mean albedo. The magnitude of the flux is insensitive to the structure and dynamics of the atmosphere—ocean system, in part because of the high efficiency of the dynamical transport mechanisms and in part because of the negative correlation between local planetary albedo and local thermal emissions to space. These results explain why the total flux and its latitudinal distribution calculated in various experiments with the GFDL general circulation model experienced relatively little modification when the hydrological cycle, mountains, or oceans were removed from the system.  相似文献   

19.
Analyses of emissions, and consequent chlorine loading, show that projected use of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) will result in a virtually indiscernible impact on stratospheric ozone. Parametric scenarios uphold this conclusion, even for extreme levels of emissions far exceeding those of current technologies and practices. Additional scenarios reaffirm the conclusion for continued use – beyond the scheduled phaseout date – as a refrigerant in closed systems. By contrast, use of this compound offers unique opportunities to reduce global warming. Moreover, time-dependent analyses show that the minimal contribution to stratospheric chlorine from HCFC-123 emissions will not peak until more than a decade after the residual peaks of chlorine and bromine, from prior chlorofluorocarbon and halon releases, subside. While no single index exists to compare the relative demerits of ozone depletion and climate change, three conclusions are clear. First, reversal of the buildup of bromine and chlorine (i.e., healing of the ozone layer) is underway and progressing on target, while sufficient practical remedies for global climate change are far more difficult. Second, the analyses show that phaseout of all chlorinated, and conceptually – but much less probably – all brominated, compounds of anthropogenic origin targets some compounds that provide environmental benefits. Most chlorinated and brominated compounds do warrant phaseout; the exceptions are those with very short atmospheric lifetimes, and consequent low ozone depletion potential (ODP), that also offer offsetting environmental benefits. And third, since new global environmental concerns may, and probably will, be identified in the future, a more scientific approach is needed to determine environmental acceptability or rejection.  相似文献   

20.
To simulate effects of projected climate change on water temperature characteristics of small lakes in the contiguous U.S., a deterministic, one-dimensional year-round water temperature model is applied. In cold regions the model simulates ice and snow cover on a lake. The lake parameters required as model input are surface area, maximum depth, and Secchi depth as a measure of radiation attenuation and trophic state. The model is driven by daily weather data. Weather records from 209 stations in the contiguous U.S. for the period 1961–1979 were used to represent present climate conditions. The projected climate change owing to a doubling of atmospheric CO2 was obtained from the output of the Canadian Climate Center General Circulation Model. The simulated water temperature and ice characteristics are related to the geometric and trophic state lake characteristics and to geographic location. By interpolation, the sensitivity of lake water temperature characteristics to latitude, longitude, lake geometry and trophic status can therefore be quantified for small lakes in the contiguous U.S. The 2× CO2 climate scenario is projected to increase maximum and minimum lake surface temperatures by up to 5.2°C. (Maximum surface water temperatures in lakes near the northern and the southern border of the contiguous U.S. currently differ by up to 13°C.) Maximum temperature differences between lake surface and lake bottom are projected to increase in average by only 1 to 2°C after climate warming. The duration of seasonal summer stratification is projected to be up to 66 days longer under a 2×CO2 climate scenario. Water temperatures of less than 8°C are projected to occur on lake bottoms during a period which is on the order of 50 days shorter under a 2×CO2 climate scenario. With water temperature change projected to be as high as 5.2°C, ecological impacts such as shifts in species distributions and in fish habitat are most likely. Ice covers on lakes of northern regions would also be changed strongly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号