首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
简要回顾了螺度引入太阳磁场研究中的历史过程,从物理角度讨论了相对磁螺度这个新的可观测量,并指出其在理论和观测中存在的问题;着重介绍了磁螺度在太阳大气中的分配问题;探讨了磁螺度和电流螺度的差别与联系、螺度半球手征性;列举介绍了磁螺度和其他太阳活动的联系,尤其是太阳爆发事件中的磁螺度问题;指出磁螺度理论中几个还没有解决的问题及今后可能取得进展的方向。  相似文献   

2.
采用二维三分量理想磁流体力学模型,研究光球磁对消引起的日珥扰动.日珥下方光球表面的磁对消将磁通量向日珥传输,引起日珥内部磁通量和磁螺度增加.日珥的状态与所积累的磁通量(或磁螺度)有关.数值结果显示,如果日珥磁通的相对增量δF(或相应的磁螺度相对增量δH)较小,日珥只略微上升和膨胀,并不离开光球;而对于较大的δF或δH);日珥将脱离光球,悬浮在低层日冕中,在其下方形成垂直电流片.  相似文献   

3.
采用二维三分量磁流体力学模型,对日冕三重无力场电流片的磁场重联进行了数值研究,揭示了重联过程的基本物理特征.这类重联过程将加热和加速日冕等离子体,并导致多个高温、高密度、高磁螺度的磁岛的形成和向上喷发.这表明,多重无力场电流片的重联可能在日冕磁能释放、上行等离子体团的形成和太阳磁场螺度向行星际空间的逃逸方面起重要的作用.  相似文献   

4.
采用二维三分量磁流体力学模型,对日冕三重无力场电流片的磁场重磁联进行了数值研究,揭示了重联过程的基本物理特征,这类重联过程将加热和加速日冕等离子体,并导致多个高温、高密度、高磁螺度的磁岛的形成和向上喷发,这表明,多重无力场电流片的重联可能在日冕磁能释放、上行等离子体的形成和太阳磁场螺度向行星际空间的逃逸方面起重要的作用。  相似文献   

5.
太阳磁场观测研究   总被引:5,自引:0,他引:5  
简要回顾了近几年国际上太阳磁场研究的一些重要进展,包括耀斑与磁切和电流的关系,电流螺度和磁螺度,磁场拓扑性,三维磁场外推,色球磁场研究,日冕磁场研究,内网络磁元,磁流和振荡,极区磁场观测以及色球磁元观测等方面内容,同时也介绍了怀柔太阳观测站最近所取得的主要成果,自20世纪90年代以来,YOHKOH高分辨率的太阳X射线数据,SOHO的多波段大尺度观测,TRACE的高分辨太阳过渡区资料,为研究太阳磁场从内部到距离几十太阳半径处的大范围演化提供了依据,高效的空间资料结合长期的地面资料,将是正派推动太阳磁场研究的重要手段和必然趋势。  相似文献   

6.
采用二维三分量理想磁流体力学模型,研究光球磁对消引起的日珥扰动。日珥下方光球的磁对消将磁通量向日珥传输,引起日珥内部磁通梁痛怕荻仍黾印H甄淼淖刺与所积累的通量(或磁螺度)有关。数值结果显示,如果日珥磁通的相对增量F(或相应的磁螺度相对增量H)较小,日珥只略微上升和膨胀,并不离开光球;而对于较大的F(或H),日 将脱离光球,悬浮在低层日冕中,在其下方形成垂直电流片。  相似文献   

7.
综述了太阳磁场非势性研究中几种光流技术法,并进一步讨论了光流技术应用后可得到的新非势性参量.主要内容分为以下两部分,(1)光流技术法是近年来太阳磁场非势性研究中新兴起的一系列图像分析法的统称,主要包括LCT,ILCT、MEF、DAVE和NAVE.对它们的计算条件、适用范围和优缺点进行了详细说明和比较.(2)应用光流技术,人们可以由时间序列的磁图得到磁结构的光流,从而直接由观测资料计算求得磁力线足点的水平流速度,进而得出磁螺度流(磁螺度由光球向日冕的注入率)、太阳表面的感应电场,光球表面的非势磁应力(其面积分就是洛伦兹力)等一系列新的非势性参量.前期研究表明,这些参量与耀斑、日珥爆发、CME等大的太阳爆发事件密切相关.  相似文献   

8.
日面磁力线脚点的速度u_f与流体质点的速度u的差异是 u-u_f=u_2B/B_z,u_z和B_z分别是速度u和磁场B的垂直日面的分量.利用这一简单关系,证明了,属于磁场的物理量,如磁通量、磁能和螺度等,通过光球表面的转移或输运与u_z无关,即与有无物质穿过日面无关,而u_f是所依赖的唯一的运动学的量.此外,还可导出,在中性线附近纵场B_z的等值线的运动速度u_l近似地等于u或u_f沿u_l方向的分量.如果通过不同时刻的纵场等值线可以估计u_l,那么也就知道了在中性线附近等离子体或磁力线脚点沿日面u_l方向的速度分量了.  相似文献   

9.
遥远星系团     
由于以下几个原因,我们对研究遥远的星系团感兴趣: (1)我们可以看到星系在80亿至100亿年以前的情况,即可以研究它们的演化。 (2)我们同样可以研究星系团本身的演化。 (3)我们可以利用观测结果作宇宙学检验,特别是我们可以通过测量q_0的值得到宇宙中的质量。这样一种得到宇宙质量的方法,其优点是它给出了整体的解决办法,丢失质量不再成为问题,它已经被包含在内了。  相似文献   

10.
陈丹 《天文爱好者》2009,(12):58-61
在上篇中我们介绍了安提基特拉机器的发现、科学史学家普赖斯的开拓性研究和迈克尔·赖特教授的贡献.并简略地说明目前最为重要的安提基特拉机器研究项目。在下篇中我们将进一步阐述安提基特拉机器研究项目的成果.展开安提基特拉机器探索的后续故事。  相似文献   

11.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

12.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

13.
Kuzanyan  Kirill  Bao  Shudong  Zhang  Hongqi 《Solar physics》2000,191(2):231-246
An attempt to extract maximum information on signatures of the alpha-effect from current helicity and twist density calculations in the solar photosphere is carried out. A possible interpretation of the results for developing the dynamo theory is discussed. The analysis shows that the surface magnetic current helicity is mainly negative/positive in the northern/southern hemispheres of the Sun. This indicates the actual alpha-effect at the photospheric level to be positive/negative, respectively. However, at the bottom of the convection zone, we may assume this effect to change the sign to negative/positive. We reveal some quantities related to the alpha-effect and discuss its spatial and temporal distribution. It is also found that there are a small number of active regions where the sign of the alpha-effect is opposite to that in most active regions. Such exceptional active regions seem to localize at certain active longitudes. We compare the determined regularities with theoretical predictions of the alpha-effect distribution in the solar convection zone.  相似文献   

14.
R. Komm  S. Gosain  A. Pevtsov 《Solar physics》2014,289(2):475-492
We search for a signature of helicity flow from the solar interior to the photosphere and chromosphere. For this purpose, we study two active regions, NOAA 11084 and 11092, that show a regular pattern of superpenumbral whirls in chromospheric and coronal images. These two regions are good candidates for comparing magnetic/current helicity with subsurface kinetic helicity because the patterns persist throughout the disk passage of both regions. We use photospheric vector magnetograms from SOLIS/VSM and SDO/HMI to determine a magnetic helicity proxy, the spatially averaged signed shear angle (SASSA). The SASSA parameter produces consistent results leading to positive values for NOAA 11084 and negative ones for NOAA 11092 consistent with the clockwise and counter-clockwise orientation of the whirls. We then derive the properties of the subsurface flows associated with these active regions. We measure subsurface flows using a ring-diagram analysis of GONG high-resolution Doppler data and derive their kinetic helicity, h z . Since the patterns persist throughout the disk passage, we analyze synoptic maps of the subsurface kinetic helicity density. The sign of the subsurface kinetic helicity is negative for NOAA 11084 and positive for NOAA 11092; the sign of the kinetic helicity is thus anticorrelated with that of the SASSA parameter. As a control experiment, we study the subsurface flows of six active regions without a persistent whirl pattern. Four of the six regions show a mixture of positive and negative kinetic helicity resulting in small average values, while two regions are clearly dominated by kinetic helicity of one sign or the other, as in the case of regions with whirls. The regions without whirls follow overall the same hemispheric rule in their kinetic helicity as in their current helicity with positive values in the southern and negative values in the northern hemisphere.  相似文献   

15.
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss  相似文献   

16.
A comparison between the two tracers of magnetic field mirror asymmetry in solar active regions – twist and current helicity – is presented. It is shown that for individual active regions these tracers do not possess visible similarity but averaging by time over the solar cycle, or by latitude, reveals similarities in their behavior. The main property of the data set is antisymmetry over the solar equator. Considering the evolution of helical properties over the solar cycle we find signatures of a possible sign change at the beginning of the cycle, though more systematic observational data are required for a definite confirmation. We discuss the role of both tracers in the context of solar dynamo theory.  相似文献   

17.
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.  相似文献   

18.
The geoeffective magnetic cloud (MC) of 20 November 2003 was associated with the 18 November 2003 solar active events in previous studies. In some of these, it was estimated that the magnetic helicity carried by the MC had a positive sign, as did its solar source, active region (AR) NOAA 10501. In this article we show that the large-scale magnetic field of AR 10501 has a negative helicity sign. Since coronal mass ejections (CMEs) are one of the means by which the Sun ejects magnetic helicity excess into interplanetary space, the signs of magnetic helicity in the AR and MC must agree. Therefore, this finding contradicts what is expected from magnetic helicity conservation. However, using, for the first time, correct helicity density maps to determine the spatial distribution of magnetic helicity injections, we show the existence of a localized flux of positive helicity in the southern part of AR 10501. We conclude that positive helicity was ejected from this portion of the AR leading to the observed positive helicity MC.  相似文献   

19.
Concept of magnetic/current helicity was introduced to solar physics about 15 years ago. Earlier studies led to discovery of such fundamental properties as hemispheric helicity rule, and role of helicity in magnetic reconnection and solar eruptions. Later, the concept was successfully applied in studies of different solar processes from solar dynamo to flare and CME phenomena. Although no silver bullet, helicity has proven to be a very useful “tool” in answering many still-puzzling questions about origin and evolution of solar magnetic fields. I present an overview of some helicity studies and briefly analyze their findings.  相似文献   

20.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号