首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A consistent map of the postglacial uplift of Fennoscandia   总被引:1,自引:0,他引:1  
Martin Ekman 《地学学报》1996,8(2):158-165
A consistent map of the recent postglacial rebound of Fennoscandia is constructed on the basis of sea-level records, lake-level records and repeated high-precision levellings.
The uplift rates calculated from the sea-level series form a consistent framework of the map. The sea-level stations used are 56 reliable stations in the Baltic Sea and adjacent waters with series spanning 60 years or more, many of them about 100 years. Using a reference station in the Baltic Sea and another one outside the Baltic, all results are reduced to a common time span, the 100-year-period 1892–1991, in order to eliminate oceanographic changes. Inland, uplift differences are obtained from the repeated national levellings and, in four of the large lakes, from long water level series in pairs. The levellings, however, yield less accurate land uplift values than the sea-level and lake-level data.
The resultant map shows a fairly smooth phenomenon, with a maximum apparent uplift in the Gulf of Bothnia of 9.0 mm yr-1. The standard error is typically 0.2 mm yr-I close to the sea level stations, larger inland.
Finally the pattern of the present uplift as determined here is observed to be very similar to that of the past uplift as determined from ancient shore-lines of the Litorina Sea. However, the ratio between the past uplift and the present uplift rate tends to increase somewhat towards the uplift centre. This might reflect a non-uniform mantle viscosity. Also, the uplift maximum seems to have migrated towards NNE.  相似文献   

2.
Cratons are conventionally assumed to be areas of long-term stability. However, whereas Precambrian basement crops out across most of the Baltic Shield, Palaeozoic and Mesozoic sediments rest on basement in southern Sweden, and thus testify to a complex history of exhumation and burial. Our synthesis of published stratigraphic landscape analysis and new apatite fission-track analysis data reveals a history involving five steps after formation of the extremely flat, Sub-Cambrian Peneplain. (1) Cambrian to Lower Triassic rocks accumulated on the peneplain, interrupted by late Carboniferous uplift and exhumation. (2) Middle Triassic uplift removed the Palaeozoic cover along the south-western margin of the shield, leading to formation of a Triassic peneplain with a predominantly flat relief followed by deposition of Upper Triassic to Lower Jurassic rocks. (3) Uplift that began during the Middle Jurassic to earliest Cretaceous caused denudation leading to deep weathering that shaped an undulating, hilly relief that was buried below Upper Cretaceous to Oligocene sediments. (4) Early Miocene uplift and erosion produced the South Småland Peneplain with scattered hills. (5) Early Pliocene uplift raised the Miocene peneplain to its present elevation leading to reexposure of the sub-Cretaceous hilly relief near the coast. Our results thus provide constraints on the magnitude and timing of episodes of deposition and removal of significant volumes of Phanerozoic rocks across the southern portion of the Baltic Shield. Late Carboniferous, Middle Triassic and mid-Jurassic events of uplift and exhumation affected wide areas beyond the Baltic Shield, and we interpret them as epeirogenic uplifts accompanying fragmentation of Pangaea, caused by accumulation of mantle heat beneath the supercontinent. Early Miocene uplift affected north-west Europe but not East Greenland, and thus likely resulted from compressive stresses from an orogeny on the Eurasian plate. Early Pliocene uplift related to changes in mantle convection and plate motion affected wide areas beyond North-East Atlantic margins.  相似文献   

3.
The creation of the huge fans observed in the western Barents Sea margin can only be explained by assuming extremely high glacial erosion rates in the Barents Sea area. Glacial processes capable of producing such high erosion rates have been proposed, but require the largest part of the preglacial Barents Sea to be subaerial. To investigate the validity of these proposals we have attempted to reconstruct the western preglacial Barents Sea. Our approach was to combine erosion maps based on prepublished data into a single mean valued erosion map covering the whole western Barents Sea and consequently use it together with a simple Airy isostatic model to obtain a first rough estimate of the preglacial topography and bathymetry of the western Barents Sea margin. The mean valued erosion map presented herein is in good volumetric agreement with the sediments deposited in the western Barents Sea margin areas, and as a direct consequence of the averaging procedures employed in its construction we can safely assume that it is the most reliable erosion map based on the available information. By comparing the preglacial sequences with the glacial sequences in the fans we have concluded that 1/2 to 2/3 of the total Cenozoic erosion was glacial in origin and therefore a rough reconstruction of the preglacial relief of the western Barents Sea could be obtained. The results show a subaerial preglacial Barents Sea. Thus, during interglacials and interstadials the area may have been partly glaciated and intensively eroded up to 1 mm/y, while during relatively brief periods of peak glaciation with grounded ice extending to the shelf edge, sediments have been evacuated and deposited at the margins at high rates. The interplay between erosion and uplift represents a typical chicken and egg problem; initial uplift is followed by intensive glacial erosion, compensated by isostatic uplift, which in turn leads to the maintenance of an elevated, and glaciated, terrain. The information we have on the initial tectonic uplift suggests that the most likely mechanism to cause an uplift of the dimensions and magnitude of the one observed in the Barents Sea is a thermal mechanism.  相似文献   

4.
A time-dependent model for stratification and circulation within the Baltic entrance area (Gustafsson 2000) is tested against observed salinities for the period 1961–1993. Although the Baltic Sea is one of the largest estuarine systems on earth, this model could be applicable to smaller estuarine systems and embayments with tidal exchange. The seasonal cycle of freshwater flux across the sill area does not follow the seasonal cycle of freshwater supply to the Baltic Sea. The seasonal variation of the flux is a combined effect of the seasonal variation in freshwater supply, in Baltic mean sea level, and in dispersion of salt across the sills. The seasonal variation in dispersion of salt is due to the seasonal cycle of sea level variability. The model is used to predict the inflow of high saline water to the Baltic Sea. The resulting inflow time-series is consistent with variations in the deep-water salinity and temperature in the deeper parts of the Baltic Sea. A comparison with previous estimates of the magnitude of major Baltic inflows shows that the model is able to reproduce the characteristics fairly well although the magnitude of the flows of water and salt appears lower than other estimates. It is shown that a climatic change that increases the wind mixing does not significantly change the major inflows. Both increased amplitudes of sea level variations in the Kattegat and decreased freshwater supply to the Baltic Sea substantially increase the magnitude of the inflows. It is shown that deep-water renewal in the Baltic Sea is obstructed during years with high freshwater supply even if the sea level forcing is favorable to a major inflow.  相似文献   

5.
Technology of CO2 capture and sequestration (CCS) is one of the many solutions to reduce greenhouse gases and alleviate the current global warming, but its security is important and needs to be evaluated. A simulator which links TOUGHREACT and FLAC3D was used to simulate the process of coupled temperature-hydrologic-mechanics (THM) in CCS. A test on laboratory scale was set up and water was injected into compacted sand covered by low permeability clay to study the land uplift displacement. The results were used to verify the accuracy of the simulator for calculating the THM coupling. The effects of injection quantity, injection time, and injection mode on land uplift were also studied on the constructed model. At last, a land uplift evaluation system was built to quantify the CO2 escape if any. The evaluation process can be divided into five steps: model generalization, acquisition of model parameters, numerical modeling, simulation and analysis, monitor comparison, and evaluation of model results. The major output of this study will provide a feasible method for quantitative analysis of CO2 leakage in CCS projects.  相似文献   

6.
Mineral magnetic measurements were carried out on twelve sediment cores from the northwestern part of the Baltic Proper. The purpose was to use magnetic properties to correlate sediment sequences and to investigate changes in depositional conditions (e.g. rate of sedimentation and redox conditions). A general lithostratigraphy consisting of five units was established based mainly on mineral magnetic properties. Sediment has been deposited from the time of the Baltic Ice Lake (before 10 300 14C years BP) to the present, i.e. since the Late Weichselian deglaciation. Five of the cores were also investigated by means of biostratigraphical methods and three by 14C dates. Based on the general stratigraphy and hiatuses, variations in sedimentation rate were identified. The occurrence of authigenically formed ferrimagnetic greigite (Fe3S4), mainly in sediments deposited during the brackish Yoldia Sea and Litorina Sea stages, is implied. These sequences are characterized by low S-ratios and high SIRM/z ratios. Glacial clay, deposited in freshwater during the Baltic Ice Lake stage and the early freshwater phase of the Yoldia Sea stage, seems to be unaffected by diagenetic processes. Gyttja clay, deposited in the Litorina Sea, has significantly lower susceptibility and SIRM than in the underlying clay. Dissolution of magnetic iron oxides (e.g. magnetite and hematite) in an anoxic environment was suggested as an explanation.  相似文献   

7.
External suffusion, as selective erosion of fine particles through the contact with a coarser layer and moving away, is an important phenomenon in dams which may lead to their failure. To study the initiation of external suffusion, caused by water level increase upstream the dam, a series of experimental investigations were conducted on laboratory-scale model, in the hydrodynamic laboratory of école polytechnique de Montreal. On the built model, clay/moraine formed the core, sand was used as a filter and gravel performed the role of the pervious layer. Several different models (in geometry and constituent materials) were built and subjected to the water level increase upstream, which resulted in changes in the hydraulic gradient. The results showed no evidence of considerable suffusion on the clay/moraine and sand interface, while the visual and quantitative data show the presence of suffusion on the sand and gravel interface. The results of the experiments show that, when focusing on the critical hydraulic gradient that initiates the movement of the clay/moraine particles, it can be concluded that despite the differences in test conditions, the critical hydraulic gradient has approximately the same value in all cases. It was also shown that increasing the length of the filter layer or applying stair-like slopes does not have great impacts on the initiation of suffusion, whereas the gravel-size distribution has a great impact on the erosion rate.  相似文献   

8.
邱燕  黄文凯  杜文波  韩冰 《地球科学》2021,46(3):899-915
南海中央海盆南、北两侧陆缘分布着面积较广的减薄陆壳,正确认识海盆减薄陆壳的成因是研究南海构造演化的重要一环.通过分析基于地壳伸展因子公式计算的南海地壳拉张伸展特征和解释中生代以来的陆壳隆升特征等,证实晚中生代以来至渐新世末,该区不仅发生了地壳拉张伸展作用,还发生了较长期的地壳隆升挤压作用,致使酸性侵入岩出露地表,减薄陆壳区的上地壳厚薄分布不均.始新世南海南部发育海陆过渡相和海相沉积、北部仅为陆相沉积,暗示始新世南海古地理格局是南、北陆缘具有不同沉积环境的盆地群,二者之间应该被隆起所隔.这些地质现象说明该区地壳隆升剥蚀与地壳拉张伸展活动时间有较长的重叠.南海中央海盆两侧减薄陆壳的成因不仅仅是地壳拉张伸展所致,而是拉张伸展与隆升剥蚀共同作用的结果,因此可以认为在曾经发生了地壳隆升挤压而遭受长期剥蚀的区域,如果用全地壳伸展因子的公式来估算地壳拉张伸展程度,将得出错误的结论.   相似文献   

9.
Postglacial land uplift patterns of south Sweden and the Baltic Sea region   总被引:1,自引:0,他引:1  
Comparison of the land uplift pattern for the last 10,300 years, shown by studies of raised shorelines of the Baltic Ice Lake, with the pattern of present-day land uplift of Fennoscandia, shows that significant regional changes of uplift pattern have taken place. Some of these changes seem to be related to a halt in ice retreat during the Younger Dryas cold stage. It is also probable that some observed anomalies in the present uplift are not of glacio-isostatic origin, but are possibly related to structures in the lower lithosphere and upper mantle or large scale tectonics.  相似文献   

10.
《Applied Geochemistry》2002,17(4):337-352
Organic C burial rates and C–S relationships were investigated in the Holocene sediment sequences of 3 shallow polymictic coastal lagoons in the southern Baltic Sea to better understand the biogeochemical cycling of C and S in these environmental systems. The results show that these lagoons may have a considerable influence on the environmental status of the southern Baltic Sea area in having the potential to act as a temporary sink or source for heavy metals. High organic C accumulation rates (Corg-AR) can be observed in the sediments due to a high organic matter supply from land and a high productivity of the water bodies as a result of eutrophication. However, organic C burial does not increase as a result of increasing sediment accumulation rates (SAR). Even when high sedimentation rates do occur, there appears to be a thorough recycling and resuspension of the sediment enhancing the biological decay of organic matter before burial or the removal of organic matter from the system by transport. That is why high SAR in the coastal lagoons do not enhance pyrite formation, and thereby permanent fixing of heavy metals in the sediments, to the extent that could be expected from their magnitude. Initially there is a high potential for a temporary binding of heavy metals, but the latter are likely to be subject to mobilization and redistribution within the sediments and the water column. The patterns of burial of organic and mineral matter are different from those observed in the present-day Baltic Proper, implying possible important links in deposition between the central and coastal areas of the Baltic Sea and implications for C cycling in the ecosystem of the Baltic Sea.  相似文献   

11.
In this study, redox-dependent phosphorus (P) recycling and burial at 6 sites in the Baltic Sea is investigated using a combination of porewater and sediment analyses and sediment age dating (210Pb and 137Cs). We focus on sites in the Kattegat, Danish Straits and Baltic Proper where present-day bottom water redox conditions range from fully oxygenated and seasonally hypoxic to almost permanently anoxic and sulfidic. Strong surface enrichments of Fe-oxide bound P are observed at oxic and seasonally hypoxic sites but not in the anoxic basins. Reductive dissolution of Fe-oxides and release of the associated P supports higher sediment-water exchange of PO4 at hypoxic sites (up to ∼800 μmol P m−2 d−1) than in the anoxic basins. This confirms that Fe-bound P in surface sediments in the Baltic acts as a major internal source of P during seasonal hypoxia, as suggested previously from water column studies. Most burial of P takes place as organic P. We find no evidence for significant authigenic Ca-P formation or biogenic Ca-P burial. The lack of major inorganic P burial sinks makes the Baltic Sea very sensitive to the feedback loop between increased hypoxia, enhanced regeneration of P and increased primary productivity. Historical records of bottom water oxygen at two sites (Bornholm, Northern Gotland) show a decline over the past century and are accompanied by a rise in values for typical sediment proxies for anoxia (total sulfur, molybdenum and organic C/P ratios). While sediment reactive P concentrations in anoxic basins are equal to or higher than at oxic sites, burial rates of P at hypoxic and anoxic sites are up to 20 times lower because of lower sedimentation rates. Nevertheless, burial of reactive P in both hypoxic and anoxic areas is significant because of their large surface area and should be accounted for in budgets and models for the Baltic Sea.  相似文献   

12.
The Skagerrak is a key region for our understanding of the Late Quaternary history of the East North Sea, of the entire Baltic basin and of the adjacent Scandinavian land areas. The depositional history of the postglacial Skagerrak began after the ice margin withdrew from Jutland to close to the modern Norwegian coast around 14 ka B.P. to 13 ka B.P. The Skagerrak was immediately filled by marine waters from the Norwegian Sea, but retained a fjord-like shape until approximately 10.2 ka B.P., when a connection opened across central Sweden to the Baltic Ice Lake. This seaway closed around 9 ka B.P., but a new seaway to the Baltic basin opened subsequently (probably close to 8.5 ka B.P.) through the Danish Belts. At about 10 ka B.P. the Skagerrak 'fjord' also started to change shape due to the flooding of the large former land area under the modern North Sea. Paleo-geography and -bathymetry of these changes can now be quantified in great detail. The young Quaternary sediments of the Skagerrak consist of fine-grained clays with minor amounts of silty and sandy material and are mostly of terrigenous origin, whereas biogenic components in general make up only a minor proportion of the bulk sediment. Prior to 10 ka B.P. a major portion of these deposits originated from the Fennoscandian regions N and E of the Skagerrak, while ice-rafting contributed coarse terrigenous components to the usually fine-grained sediments and while it was filled by brackish surface and cold polar bottom waters. At approximately 10 ka B.P., more temperate waters started to fill the Skagerrak and a good portion of the sediment seems to have originated from areas to the South. The Norwegian Coastal Current can only be documented for the past 7 ka; subtle changes of the pelagic and benthic environments could also be documented for later intervals.  相似文献   

13.
旋转平推式滑坡在青藏高原东北缘地区集中分布,论文系统梳理了该类滑坡的分布特征、几何应变模型,结合室外调查、试验与数值模拟计算,探讨了近水平滑动带变形的动力机制。研究表明:(1)旋转平推滑坡集中分布于东北缘上新世泥岩盆地内,其活动强度受到青藏高原隆升过程的影响,自高原腹地至边缘盆地,滑体体积逐步减小。巨大型滑坡群集中于黄河水系上游地区;大、中型型滑坡群分别集中于下游地区;(2)旋转平推滑坡均由高黏粒含量、超固结上新世泥岩组成,河流的侵蚀是近水平剪切应力形成的控制性因素。在水平应力作用下,超固结泥岩趋向与膨胀,表现出剪胀、渐进性破坏。薄层剪切带呈现韧、脆性变形,区域内随机排列的黏土颗粒的逐步定向,表现出低于10o的内摩擦角。(3)滑动带的蠕变、裂隙扩展与地下水的增湿加速材料的流变,滑面选择粘粒含量高、碳酸钙的含量低的软弱层扩展。滑带内粘土矿物蠕变、呈粘滞性流动,导致宏观变形逐步积累,并逐步出现剪切面、裂纹的扩展,是滑坡变形的动力因素之一。  相似文献   

14.
A dense grid of multichannel high-resolution seismic sections from the Bay of Kiel in the western Baltic Sea has been interpreted in order to reveal the Mesozoic and Cenozoic geological evolution of the northern part of the North German Basin. The overall geological evolution of the study area can be separated into four distinct periods. During the Triassic and the Early Jurassic, E–W extension and the deposition of clastic sediments initiated the movement of the underlying Zechstein evaporites. The deposition ceased during the Middle Jurassic, when the entire area was uplifted as a result of the Mid North Sea Doming. The uplift resulted in a pronounced erosion of Upper Triassic and Lower Jurassic strata. This event is marked by a clear angular unconformity on all the seismic sections. The region remained an area of non-deposition until the end of the Early Cretaceous, when the sedimentation resumed in the area. Throughout the Late Cretaceous the sedimentation took place under tectonic quiescence. Reactivated salt movement is observed at the Cretaceous Cenozoic transition as a result of the change from an extensional to compressional regional stress field. The vertical salt movement influenced the Cenozoic sedimentation and resulted in thin-skinned faulting.  相似文献   

15.
A clay-varve chronology based on 14 cross-correlated varve graphs from the Baltic Sea and a mean varve thickness curve has been constructed. This chronology is correlated with the Swedish Time Scale and covers the time span 11530 to 10250 varve years BP. Two cores have been analysed for grain size, chemistry, content of diatoms and changes in colour by digital colour analysis. The final drainage of the Baltic Ice Lake is dated to c . 10800 varve years BP and registered in the cores analysed as a decrease in the content of clay. This event can be correlated with atmospheric Δ14 C content and might have resulted in an increase in these values recorded between 11565 and 11545 years BP. The results of the correlation between the varve chronology from the Baltic Sea, the Greenland GRIP ice core and the atmospheric Δ14 C record indicate that c . 760 years are missing in the Swedish Time Scale in the part younger than c. 10250 varve years BP. A change in colour from a brownish to grey varved glacial clay recorded c . 10770 varve years BP is found to be the result of oxygen deficiency due to an increase in the rate of sedimentation in the early Preboreal. The first brackish influence is recorded c . 10540 varve years BP in the northwestern Baltic Sea and some 90 years later in the eastern Gotland Basin.  相似文献   

16.
The Baltic Sea, particularly its southeastern part, is discussed in the paper. Investigations of regional character as well as specialized studies in the area are reviewed. General historical works are mentioned briefly. Previous surveys since the 1950s are presented by the subject studied. The compilation of geological structure of the SE Baltic Sea bottom and adjacent land of Balticum (Baltic States: Estonia, Latvia, Lithuania) is based on considerable amounts of summarized materials. The crystalline basement, sedimentary cover and Quaternary deposits are characterized in the comprehensive survey of geological structure. From a stratigraphical point of view, geological sequence of the platformal cover is comparatively complete: deposits of all geological systems (from the Archean to Cenozoic) are present in the Baltic Syneclise. Considering geotectonical cycles, the sedimentary cover of the syneclise is subdivided into four structural complexes. The thickness and distribution of Quaternary deposits are closely related to the recent bottom relief of the Baltic Sea that in turn is inherited from the Pre-Quaternary surface. Buried palaeo-valleys are characteristic of the Pre-Quaternary surface in the Baltic region and the Baltic Sea bottom. The Quaternary is characterized by layers of various geneses and by sharp changes of their thicknesses.  相似文献   

17.
《Earth》2009,92(1-4):77-92
The hypoxic zone in the Baltic Sea has increased in area about four times since 1960 and widespread oxygen deficiency has severely reduced macro benthic communities below the halocline in the Baltic Proper and the Gulf of Finland, which in turn has affected food chain dynamics, fish habitats and fisheries in the entire Baltic Sea. The cause of increased hypoxia is believed to be enhanced eutrophication through increased anthropogenic input of nutrients, such as nitrogen and phosphorus. However, the spatial variability of hypoxia on long time-scales is poorly known: and so are the driving mechanisms. We review the occurrence of hypoxia in modern time (last c. 50 years), modern historical time (AD 1950–1800) and during the more distant past (the last c. 10 000 years) and explore the role of climate variability, environmental change and human impact. We present a compilation of proxy records of hypoxia (laminated sediments) based on long sediment cores from the Baltic Sea. The cumulated results show that the deeper depressions of the Baltic Sea have experienced intermittent hypoxia during most of the Holocene and that regular laminations started to form c. 8500–7800 cal. yr BP ago, in association with the formation of a permanent halocline at the transition between the Early Littorina Sea and the Littorina Sea s. str. Laminated sediments were deposited during three main periods (i.e. between c. 8000–4000, 2000–800 cal. yr BP and subsequent to AD 1800) which overlap the Holocene Thermal Maximum (c. 9000–5000 cal. yr BP), the Medieval Warm Period (c. AD 750–1200) and the modern historical period (AD 1800 to present) and coincide with intervals of high surface salinity (at least during the Littorina s. str.) and high total organic carbon content. This study implies that there may be a correlation between climate variability in the past and the state of the marine environment, where milder and dryer periods with less freshwater run-off correspond to increased salinities and higher accumulation of organic carbon resulting in amplified hypoxia and enlarged distribution of laminated sediments. We suggest that hydrology changes in the drainage area on long time-scales have, as well as the inflow of saltier North Sea waters, controlled the deep oxic conditions in the Baltic Sea and that such changes have followed the general Holocene climate development in Northwest Europe. Increased hypoxia during the Medieval Warm Period also correlates with large-scale changes in land use that occurred in much of the Baltic Sea watershed during the early-medieval expansion. We suggest that hypoxia during this period in the Baltic Sea was not only caused by climate, but increased human impact was most likely an additional trigger. Large areas of the Baltic Sea have experienced intermittent hypoxic from at least AD 1900 with laminated sediments present in the Gotland Basin in the Baltic Proper since then and up to present time. This period coincides with the industrial revolution in Northwestern Europe which started around AD 1850, when population grew, cutting of drainage ditches intensified, and agricultural and forest industry expanded extensively.  相似文献   

18.
Southwestern Finland was covered by the Weichselian ice sheet and experienced rapid glacio-isostatic rebound after early Holocene deglaciation. The present mean overall apparent uplift rate is of the order of 4-5 mm/yr, but immediately after deglaciation the rate of crustal rebound was several times higher. Concurrently with land uplift, relative sea level in the Baltic basin during the past more than 8000 years was also strongly affected by the eustatic changes in sea level. There is ample evidence from earlier studies that during the early Litorina Sea stage on the southeastern coast of Finland around 7000 yr BP (7800 cal. yr BP), the rise in sea level exceeded the rate of land uplift, resulting in a short-lived transgression. Because of a higher rate of uplift, the transgression was even more short-lived or of negligible magnitude in the southwestern part of coastal Finland, but even in this latter case a slowing down in the rate of regression can still be detected. We used evidence from isolation basins to obtain a set of 71 14C dates, and over 30 new sea-level index points. The age-elevation data, obtained from lakes in two different areas and located between c. 64 m and 1.5 m above present sea level, display a high degree of internal consistency. This suggests that the dates are reliable, even though most of them were based on bulk sediment samples. The two relative sea-level curves confirm the established model of relatively gradually decreasing rates of relative sea-level lowering since c. 6100 yr BP (7000 cal. yr BP) and clearly indicate that the more northerly of the two study areas experienced the higher rate of glacio-isostatic recovery. In the southerly study area, changes in diatom assemblages and lithostratigraphy suggest that during the early Litorina Sea stage (8300-7600 cal. yr BP) eustatic sea-level rise exceeded land uplift for hundreds of years. Evidence for this transgression was discovered in a lake with a basin threshold at an elevation of 41 m above sea level, which is markedly higher than any previously known site with evidence for the Litorina transgression in Finland. We also discuss evidence for subsequent short-term fluctuations superimposed on the main trends of relative sea-level changes.  相似文献   

19.
Knudsen, K. L., Jiang, H., Kristensen, P., Gibbard, P. L. & Haila, H. 2011: Early Last Interglacial palaeoenvironments in the western Baltic Sea: benthic foraminiferal stable isotopes and diatom‐based sea‐surface salinity. Boreas, 10.1111/j.1502‐3885.2011.00206.x. ISSN 0300‐9483. Stable isotopes from benthic foraminifera, combined with diatom assemblage analysis and diatom‐based sea‐surface salinity reconstructions, are used for the interpretation of changes in bottom‐ and surface‐water conditions through the early Eemian at Ristinge Klint in the western Baltic Sea. Correlation of the sediments with the Eemian Stage is based on a previously published pollen analysis that indicates that they represent pollen zones E2–E5 and span ~3400 years. An initial brackish‐water phase, initiated c. 300 years after the beginning of the interglacial, is characterized by a rapid increase in sea‐surface and sea‐bottom salinity, followed by a major increase at c. 650 years, which is related to the opening of the Danish Straits to the western Baltic. The diatoms allow estimation of the maximum sea‐surface salinity in the time interval of c. 650–1250 years. After that, slightly reduced salinity is estimated for the interval of c. 1250–2600 years (with minimum values at c. 1600–2200 years). This may be related to a period of high precipitation/humidity and thus increased freshwater run‐off from land. Together with a continuous increase in the water depth, this may have contributed to the gradual development of a stratified water column after c. 1600 years. The stratification was, however, particularly pronounced between c. 2600 and 3400 years, a period with particularly high sea‐surface temperature, as well as bottom‐water salinity, and thus a maximum influence of Atlantic water masses. The freshwater run‐off from land may have been reduced as a result of particularly high summer temperatures during the climatic optimum.  相似文献   

20.
The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio‐isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene‐aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic‐geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post‐Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio‐isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post‐Littorina Sea sediments. Modern Baltic sediments and evidence of human‐induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号