首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Snowmelt onset and end date estimates are made from QuikSCAT scatterometer measurements in the Canadian High Arctic wetland of Polar Bear Pass (PBP) and the surrounding region of Bathurst Island, Nunavut. In situ data within PBP is used to validate QuikSCAT snowmelt onset/end date estimates. Results indicate that within PBP from 2000 to 2009, the mean snowmelt onset date was Year Day (YD) 162, the mean snowmelt end date was YD179, and the mean snowmelt duration was 17 days. More interannual variability was apparent in snowmelt end date and duration compared with onset, and only snowmelt end date was significantly correlated with mean June air temperature at ?0.78. Cooler air temperatures in 2004 contributed to a long snowmelt duration of 24 days, and the very short snowmelt duration in 2007 of just 11 days was caused by rapid and sustained increases in air temperature. For snowmelt end date and duration the mean spatial pattern revealed two centres of later snowmelt end date/longer snowmelt duration over Bathurst Island. They were separated by early snowmelt end date/short snowmelt duration in PBP. These patterns are in agreement with the spatial distribution of mean May to July air temperature over Bathurst Island and are likely influenced by the local‐scale topography of Bathurst Island. Given the correlation between air temperature and snowmelt end date, we might expect quicker snowmelt under increased warming. The latter process may have implications for the sustainability of the PBP wetland under a warmer climate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

We simulated snow processes in a forested region with heavy snowfall in Japan, and evaluated both the regional-scale snow distribution and the potential impact of land-use changes on the snow cover and water balances over the entire domain. SnowModel reproduced the snow processes at open and forested sites, which were confirmed by snow water equivalent (SWE) measurements at two intensive observation sites and snow depth measurements at the Automated Meteorological Data Acquisition System sites. SnowModel also reproduced the observed snow distribution (from the MODIS snow cover data) over the simulation domain during thaw. The observed SWE was less at the forested site than at the open site. The SnowModel simulations showed that this difference was caused mainly by differences in sublimation. The type of land use changed the maximum SWE, onset and duration of snowmelt, and the daily snowmelt rate due to canopy snow interception.

Citation Suzuki, K., Kodama, Y., Nakai, T., Liston, G. E., Yamamoto, K., Ohata, T., Ishii, Y., Sumida, A., Hara, T. & Ohta, T. (2011) Impact of land-use changes in a forested region with heavy snowfall in Hokkaido, Japan. Hydrol. Sci. J. 56(3), 443–467.  相似文献   

3.
Abstract

The physical properties of snow, including apparent density, snow cover distribution and snowmelt in the Nahr El Kelb basin (Mount Lebanon), were studied in order to design a simple empirical snowmelt model. In February 2001, snow covered an area of 1600 km2 on Mount Lebanon, representing a water equivalent of 1.1 x 109 m3. The snow surface area was calculated by combining TM5 images with a digital elevation model, and field observations made every three days, from 1400 to 2300 m altitude. The depletion of snow cover was measured from the end of December 2000 to the end of June 2001. The snowmelt was measured from surface depletion on a degree-day basis. A simple model relating the daily snowmelt to the product of wind speed and average positive daily air temperature, is presented and discussed. For Mount Lebanon, this model gave a better approximation of snowmelt than a simple degree-day model.  相似文献   

4.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Snow is one of the most active natural elements of snow cover through its high albedo, variation of the the cryosphere on the earth surface. Its unique proper- snow cover distribution and frozen soils in regional ties, such as areal extent, surface albedo, and snow scales not only affect local climate and environments, depth are important parameters in global energy bal- but also feedback to large-scale, or even global cli- ance models. On global and terrestrial scales, a large matic change th…  相似文献   

6.
Abstract

The areal and temporal characteristics of the snowpack in a small subarctic drainage basin at Schefferville, Quebec, were analysed prior to and during the snowmelt in 1972 and 1973. The data showed that vegetation cover is of prime importance in determining the areal distribution of snowpack properties. The areal distribution of snow water equivalent could be characterized by a normal distribution in each of four vegetation cover types. It was found that the mean and standard deviation of snow water equivalent are closely related to vegetation cover. Also, mean snow water equivalent varies from year to year but standard deviation shows no significant variation. This suggests that mean accumulation is the result of annual snowfall amounts, while the variability is due to the effects of vegetation cover and accumulation processes. The data also showed that during the snowmelt, the variability of snowcover properties shows no significant change. Using the normal distributions of the peak accumulation snow water equivalents, and observed and calculated melt rates, the areal extent of snowcover was determined.  相似文献   

7.
A network of 30 standalone snow monitoring stations was used to investigate the snow cover distribution, snowmelt dynamics, and runoff generation during two rain‐on‐snow (ROS) events in a 40 km2 montane catchment in the Black Forest region of southwestern Germany. A multiple linear regression analysis using elevation, aspect, and land cover as predictors for the snow water equivalent (SWE) distribution within the catchment was applied on an hourly basis for two significant ROS flood events that occurred in December 2012. The available snowmelt water, liquid precipitation, as well as the total retention storage of the snow cover were considered in order to estimate the amount of water potentially available for the runoff generation. The study provides a spatially and temporally distributed picture of how the two observed ROS floods developed in the catchment. It became evident that the retention capacity of the snow cover is a crucial mechanism during ROS. It took several hours before water was released from the snowpack during the first ROS event, while retention storage was exceeded within 1 h from the start of the second event. Elevation was the most important terrain feature. South‐facing terrain contributed more water for runoff than north‐facing slopes, and only slightly more runoff was generated at open compared to forested areas. The results highlight the importance of snowmelt together with liquid precipitation for the generation of flood runoff during ROS and the large temporal and spatial variability of the relevant processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

Many of the Japanese regions subject to seasonal snow cover are characterized by low elevations and relatively high winter temperatures. A small change in winter temperatures could render many of these areas susceptible to snow cover change and consequently affect water resources management. This paper describes a climatological approach combined with an AGCM output to identify the regions and main river basins most sensitive to snow cover change in the case of climate change in Japan. It was found that a 1°C rise in temperature during the winter season could increase the snow-free area of Japan by 6%. The snow cover of Tohoku region and Mogami and Agano river basins was found to be the most sensitive to climate change. The AGCM output for a future scenario presents a reduction in total snowfall and an earlier peak in snowmelt for all regions.

Editor Z.W. Kundzewicz

Citation Chaffe, P.L.B, Takara, K, Yamashiki, Y, Apip, Luo, P., Silva, R.V., and Nakakita, E., 2013. Mapping of Japanese areas susceptible to snow cover change. Hydrological Sciences Journal, 58 (8), 1718–1728.  相似文献   

9.
S. Pohl  P. Marsh 《水文研究》2006,20(8):1773-1792
Arctic spring landscapes are usually characterized by a mosaic of coexisting snow‐covered and bare ground patches. This phenomenon has major implications for hydrological processes, including meltwater production and runoff. Furthermore, as indicated by aircraft observations, it affects land‐surface–atmosphere exchanges, leading to a high degree of variability in surface energy terms during melt. The heterogeneity and related differences when certain parts of the landscape become snow free also affects the length of the growing season and the carbon cycle. Small‐scale variability in arctic snowmelt is addressed here by combining a spatially distributed end‐of‐winter snow cover with simulations of variable snowmelt energy balance factors for the small arctic catchment of Trail Valley Creek (63 km2). Throughout the winter, snow in arctic tundra basins is redistributed by frequent blowing snow events. Areas of above‐ or below‐average end‐of‐winter snow water equivalents were determined from land‐cover classifications, topography, land‐cover‐based snow surveys, and distributed surface wind‐field simulations. Topographic influences on major snowmelt energy balance factors (solar radiation and turbulent fluxes of sensible and latent heat) were modelled on a small‐scale (40 m) basis. A spatially variable complete snowmelt energy balance was subsequently computed and applied to the distributed snow cover, allowing the simulation of the progress of melt throughout the basin. The emerging patterns compared very well visually to snow cover observations from satellite images and aerial photographs. Results show the relative importance of variable end‐of‐winter snow cover, spatially distributed melt energy fluxes, and local advection processes for the development of a patchy snow cover. This illustrates that the consideration of these processes is crucial for an accurate determination of snow‐covered areas, as well as the location, timing, and amount of meltwater release from arctic catchments, and should, therefore, be included in hydrological models. Furthermore, the study shows the need for a subgrid parameterization of these factors in the land surface schemes of larger scale climate models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(1):179-191
Abstract

Skill measures based on 2 × 2 contingency tables were adopted for the quantitative internal verification of snow cover simulations with the distributed hydrological model PREVAH, which provided a high resolution simulation of the hydrological cycle for Switzerland for the 1981–2000 period. Simulated snow cover has been compared to data monitored at 103 stations. The skill measures provide valuable quantitative indications on the correspondence of the modelled and observed values. The analysis with objective scores reveals better model estimates of snow cover presence and distribution in locations above 1000 m a.s.l., relative to lower areas. For explicit spatial verification, 20 NOAA-AVHRR snow cover scenes were compared to the model results. The spatial and temporal differences in the agreement between observed and simulated snow cover patterns were assessed. PREVAH provides reliable snow cover simulations. The results also reveal that scores from 2 × 2 contingency tables provide objective methodological support in the quantitative estimation of the agreement between observed and simulated spatial patterns.  相似文献   

11.
Abstract

Snowmelt runoff is a significant component of the hydrological cycle in many regions. Major problems of snowmelt runoff modelling associated with the physiographic and climatic conditions of these regions, and problem solutions being investigated, are reviewed. Problems common to all regions include: (a) definition of the spatial and temporal distribution of model input; (b) measurement or estimation of snow accumulation, snowmelt, and runoff process parameters for a range of applications and scales; and (c) development of accurate short term and long term snowmelt runoff forecasts. Procedures being investigated to solve these problems include: (a) integrating conventional and remote-sensing data to improve estimates of input data; (b) developing snowmelt process algorithms which have parameters that are closely related to measurable basin and climatic characteristics; and (c) updating model parameters and components using measured data or knowledge of past uncertainty. Research needs include development of improved model capabilities and establishment of standardized techniques and measures to evaluate model performance and results.  相似文献   

12.
An accurate simulation of snowmelt runoff is of much importance in arid alpine regions. Data availability is usually an obstacle to use energy‐based snowmelt models for the snowmelt runoff simulation, and temperature‐based snowmelt models are more appealing in these regions. The snow runoff model is very popular nowadays, especially in the data sparse regions, because only temperature, precipitation and snow cover data are required for inputs to the model. However, this model uses average temperature as index, which cannot reflect the snowmelt simulation in the high altitude band. In this study, the snow runoff model is modified on the basis of accumulated active temperature. Snow cover calculation algorithm is added and is no longer needed as input but output. This makes the model able to simulate long‐time runoff and long‐time snow cover variation in every band. An examination of the improved model in the Manas River basin showed that the model is effective. It can reproduce the behaviour of the hydrology and can reflect the actual snow cover fluctuation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
In the discontinuous permafrost zone of the Northwest Territories (NWT), Canada, snow covers the ground surface for half the year. Snowmelt constitutes a primary source of moisture supply for the short growing season and strongly influences stream hydrographs. Permafrost thaw has changed the landscape by increasing the proportional coverage of permafrost-free wetlands at the expense of permafrost-cored peat plateau forests. The biophysical characteristics of each feature affect snow water equivalent (SWE) accumulation and melt rates. In headwater streams in the southern Dehcho region of the NWT, snowmelt runoff has significantly increased over the past 50 years, despite no significant change in annual SWE. At the Fort Simpson A climate station, we found that SWE measurements made by Environment and Climate Change Canada using a Nipher precipitation gauge were more accurate than the Adjusted and Homogenized Canadian Climate Dataset which was derived from snow depth measurements. Here, we: (a) provide 13 years of snow survey data to demonstrate differences in end-of-season SWE between wetlands and plateau forests; (b) provide ablation stake and radiation measurements to document differences in snow melt patterns among wetlands, plateau forests, and upland forests; and (c) evaluate the potential impact of permafrost-thaw induced wetland expansion on SWE accumulation, melt, and runoff. We found that plateaus retain significantly (p < 0.01) more SWE than wetlands. However, the differences are too small (123 mm and 111 mm, respectively) to cause any substantial change in basin SWE. During the snowmelt period in 2015, wetlands were the first feature to become snow-free in mid-April, followed by plateau forests (7 days after wetlands) and upland forests (18 days after wetlands). A transition to a higher percentage cover of wetlands may lead to more rapid snowmelt and provide a more hydrologically-connected landscape, a plausible mechanism driving the observed increase in spring freshet runoff.  相似文献   

14.
Abstract

This paper presents the relationship between Indian summer monsoon total rainfall and two parameters from Eurasian snow cover, one being the winter snow cover extent and the other the area of spring snowmelt. Satellite-derived Eurasian snow cover extent and Indian monsoon rainfall data were obtained from the NOAA/NESDIS and the India Meteorological Department (IMD) for the period 1966–1985. Seasonal cyclic variations of snow cover showed a higher swing in both the winter and the spring seasons of the cycle as compared to the remaining seasons of the year in the lower region of the cycle. The established inverse relation between winter snow cover and monsoon rainfall during June to September is further extended. Winter snow cover is very strongly correlated with spring snowmelt over Eurasia. Spring snowmelt area is obtained by subtracting the May snow cover extent from that of the previous February. The variations of spring snowmelt were also compared with Indian total monsoon rainfall. The detected correlation is stronger between snowmelt and monsoon rainfall than between the winter snow cover and the monsoon rainfall. There is also a significant multiple correlation among winter snow cover, spring snowmelt and monsoon rainfall. Lastly, a significant multiple correlation suggested a multiple regression equation which might improve the climatic prediction of monsoon rainfall over India.  相似文献   

15.
Snowmelt water supplies streamflow and growing season soil moisture in mountain regions, yet pathways of snowmelt water and their effects on moisture patterns are still largely unknown. This study examined how flow processes during snowmelt runoff affected spatial patterns of soil moisture on two steep sub‐alpine hillslope transects in Rocky Mountain National Park, CO, USA. The transects have northeast‐facing and east‐facing aspects, and both extend from high‐elevation bedrock outcrops down to streams in valley bottoms. Spatial patterns of both snow depth and near‐surface soil moisture were surveyed along these transects in the snowmelt and summer seasons of 2008–2010. To link these patterns to flow processes, soil moisture was measured continuously on both transects and compared with the timing of discharge in nearby streams. Results indicate that both slopes generated shallow lateral subsurface flow during snowmelt through near‐surface soil, colluvium and bedrock fractures. On the northeast‐facing transect, this shallow subsurface flow emerged through mid‐slope seepage zones, in some cases producing saturation overland flow, whereas the east‐facing slope had no seepage zones or overland flow. At the hillslope scale, earlier snowmelt timing on the east‐facing slope led to drier average soil moisture conditions than on the northeast‐facing slope, but within hillslopes, snow patterns had little relation to soil moisture patterns except in areas with persistent snow drifts. Results suggest that lateral flow and exfiltration processes are key controls on soil moisture spatial patterns in this steep sub‐alpine location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Warm winters and high precipitation in north-eastern Japan generate snow covers of more than three meters depth and densities of up to 0.55 g cm−3. Under these conditions, rain/snow ratio and snowmelt have increased significantly in the last decade under increasing warm winters. This study aims at understanding the effect of rain-on-snow and snowmelt on soil moisture under thick snow covers in mid-winter, taking into account that snowmelt in spring is an important source of water for forests and agriculture. The study combines three components of the Hydrosphere (precipitation, snow cover and soil moisture) in order to trace water mobility in winter, since soil temperatures remained positive in winter at nearly 0.3°C. The results showed that soil moisture increased after snowmelt and especially after rain-on-snow events in mid-winter 2018/2019. Rain-on-snow events were firstly buffered by fresh snow, increasing the snow water equivalent (SWE), followed by water soil infiltration once the water storage capacity of the snowpack was reached. The largest increase of soil moisture was 2.35 vol%. Early snowmelt increased soil moisture with rates between 0.02 and 0.035 vol% hr−1 while, rain-on-snow events infiltrated snow and soil faster than snowmelt and resulted in rates of up to 1.06 vol% hr−1. These results showed the strong connection of rain, snow and soil in winter and introduce possible hydrological scenarios in the forest ecosystems of the heavy snowfall regions of north-eastern Japan. Effects of rain-on-snow events and snowmelt on soil moisture were estimated for the period 2012–2018. Rain/snow ratio showed that only 30% of the total precipitation in the winter season 2011/2012 was rain events while it was 50% for the winter 2018/2019. Increasing climate warming and weakening of the Siberian winter monsoons will probably increase rain/snow ratio and the number of rain-on-snow events in the near future.  相似文献   

17.
The spatial variability of snow water equivalent (SWE) can exert a strong influence on the timing and magnitude of snowmelt delivery to a watershed. Therefore, the representation of sub-grid or sub-watershed snow variability in hydrologic models is important for accurately simulating snowmelt dynamics and runoff response. The U.S. Geological Survey National Hydrologic Model infrastructure with the precipitation-runoff modelling system (NHM-PRMS) represents the sub-grid variability of SWE with snow depletion curves (SDCs), which relate snow-covered area to watershed-mean SWE during the snowmelt period. The main objective of this research was to evaluate the sensitivity of simulated runoff to SDC representation within the NHM-PRMS across the continental United States (CONUS). SDCs for the model experiment were derived assuming a range of SWE coefficient of variation values and a lognormal probability distribution function. The NHM-PRMS was simulated at a daily time step for each SDC over a 14-year period. Results highlight that increasing the sub-grid snow variability (by changing the SDC) resulted in a consistently slower snowmelt rate and longer snowmelt duration when averaged across the hydrologic response unit scale. Simulated runoff was also found to be sensitive to SDC representation, as decreases in simulated snowmelt rate by 1 mm day−1 resulted in decreases in runoff ratio by 1.8% on average in snow-dominated regions of the CONUS. Simulated decreases in runoff associated with slower snowmelt rates were approximately inversely proportional to increases in simulated evapotranspiration. High snow persistence and peak SWE:annual precipitation combined with a water-limited dryness index was associated with the greatest runoff sensitivity to changing snowmelt. Results from this study highlight the importance of carefully parameterizing SDCs for hydrologic modelling. Furthermore, improving model representation of snowmelt input variability and its relation to runoff generation processes is shown to be an important consideration for future modelling applications.  相似文献   

18.
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high‐altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial–temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from the Moderate Resolution Imaging Spectroradiometer snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree–day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9–3 days/10a and the end time of snow melt has become later by 0.6–2.3 days/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6% and 6.8%, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The onset of snowmelt in the upper Yukon River basin, Canada, can be derived from brightness temperatures (Tb) obtained by the Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) on NASA's Aqua satellite. This sensor, with a resolution of 14 × 8 km2 for the 36·5 GHz frequency, and two to four observations per day, improves upon the twice‐daily coverage and 37 × 28 km2 spatial resolution of the Special Sensor Microwave Imager (SSM/I). The onset of melt within a snowpack causes an increase in the average daily 36·5 GHz vertically polarized Tb as well as a shift to high diurnal amplitude variations (DAV) as the snow melts during the day and re‐freezes at night. The higher temporal and spatial resolution makes AMSR‐E more sensitive to sub‐daily Tb oscillations, resulting in DAV that often show a greater daily range compared to SSM/I. Therefore, thresholds of Tb > 246 K and DAV > ± 10 K developed for use with SSM/I have been adjusted for detecting the onset of snowmelt with AMSR‐E using ground‐based surface temperature and snowpack wetness relationships. Using newly developed thresholds of Tb > 252 K and DAV > ± 18 K, AMSR‐E derived snowmelt onset correlates well with SSM/I observations in the small subarctic Wheaton River basin through the 2004 and 2005 winter/spring transition. In addition, the onset of snowmelt derived from AMSR‐E data gridded at a higher resolution than the SSM/I data indicates that finer‐scale differences in elevation and land cover affect the onset of snowmelt and are detectable with the AMSR‐E sensor. On the basis of these observations, the enhanced resolution of AMSR‐E is more effective than SSM/I at delineating spatial and temporal snowmelt dynamics in the heterogeneous terrain of the upper Yukon River basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The dominant source of streamflow in many mountainous watersheds is snowmelt recharge through shallow groundwater systems. The hydrological response of these watersheds is controlled by basin structure and spatially distributed snowmelt. The purpose of this series of two papers is to simulate spatially varying snowmelt and groundwater response in a small mountainous watershed. This paper examines the spatially and temporally variable snowmelt to be used as input to the groundwater flow modelling described in the second paper. Snowmelt simulation by the Simultaneous Heat and Water (SHAW) model (a detailed process model of the interrelated heat, water and solute movement through vegetative cover, snow, residue and soil) was validated by applying the model to two years of data at three sites ranging from shallow transient snow cover on a west-facing slope to a deep snow drift on a north-facing slope. The simulated energy balances for several melt periods are presented. Snow depth, density, and the magnitude and timing of snow cover outflow were simulated well for all sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号