首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphodynamics in sand‐bed braided rivers are associated with simultaneous evolution of mid‐channel bars and channels on the braidplain. Bifurcations around mid‐channel bars are key elements that divide discharge and sediment. This, in turn, may control the evolution of connected branches, with effects propagating to both upstream and downstream bifurcations. Recent works on bifurcation stability and development hypothesize major roles of secondary flow and gradient advantage. However, this has not been tested for channel networks within a fully developed dynamic braided river. A reason for this is a lack of detailed measurements with sufficient temporal and spatial length, covering multiple bifurcations. Therefore we used a physics‐based numerical model to generate a dataset of bathymetry, flow and sediment transport of an 80 km river reach with self‐formed braid bars and bifurcations. The study shows that bar dissection due to local transverse water surface gradients is the dominant bifurcation initiation mechanism, although conversion of unit bars into compound bars dominates in the initial stage of a braided river. Several bifurcation closure mechanisms are equally important. Furthermore, the study showed that nodal point relations for bifurcations are unable to predict short‐term bifurcation evolution in a braided river. This is explained by occurrence of nonlinear processes and non‐uniformity within the branches, in particular migrating bars and larger‐scale backwater‐effects, which are not included in the nodal point relations. Planform morphology, on the other hand, has predictive capacity: bifurcation angle asymmetry and bar‐tail limb shape are indicators for near‐future bifurcation evolution. Remote sensing data has predictive value, for which we developed a conceptual model for interactions between bars, bifurcations and channels in the network. We conducted a preliminary test of the conceptual model on satellite images of the Brahmaputra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Shallow groundwater is an important source of water for the maintenance and restoration of ecosystems in arid environments, which necessitates a deeper understanding of its complex spatial and temporal dynamics driven by hydrological processes. This study explores the dominant hydrological processes that control the shallow groundwater dynamics in the Gobi Desert‐riparian‐oasis system of the lower Heihe River, a typical arid inland river basin located in northwestern China. The groundwater level and temperature were monitored in 14 shallow wells at 30‐min intervals during the 2010–2012 period. After combining this information with meteorological and hydrological data, a comprehensive analysis was conducted to understand the dynamic behaviour of the shallow groundwater system and to determine the dominant factors that control the groundwater flow processes. The results of the study indicate notably large temporal and spatial variations in both the groundwater level and temperature. Noticeable fluctuations in the groundwater level (0.5–1 m) and temperature (4–8 °C) were observed in the riparian zone, evidencing a clear river influence. In comparison, the groundwater fluctuations in the Gobi Desert were more stable (the annual variations of the water table were less than 0.5 m, and the water temperature varied by no more than 2 °C). Strong variations in the groundwater table (1.5–5.0 m/year) and temperature (1.5–6.5 °C), mainly caused by surface flood irrigation and groundwater pumping, were observed in the oasis area. The investigated sites were categorized into three types that reflect the dominant hydrological processes: (1) the riparian zone, dominated by riverbank filtration and groundwater evapotranspiration; (2) the Gobi Desert area, controlled by groundwater evaporation and lateral recharge; and (3) the oasis area, dominated by groundwater evapotranspiration as well as surface–groundwater interactions caused by human activities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Two controlled flow events were generated by releasing water from a reservoir into the Olewiger Bach, located near Trier, Germany. This controlled release of near bank‐full flows allowed an investigation of the fine sediment (<63 µm) mobilized from channel storage. Both a winter (November) and a summer (June) release event were generated, each having very different antecedent flow conditions. The characteristics of the release hydrographs and the associated sediment transport indicated a reverse hysteresis with more mass, but smaller grain sizes, moving on the falling limb. Fine sediment stored to a depth of 10 cm in the gravels decreased following the release events, indicating the dynamic nature and importance of channel‐stored sediments as source materials during high flow events. Sediment traps, filled with clean natural gravel, were buried in riffles before the release of the reservoir water and the total mass of fine sediment collected by the traps was measured following the events. Twice the mass of fine sediment was retained by the gravel traps compared with the natural gravels, which may be due to their altered porosity. Although the amount of fine sediment collected by the traps was not significantly related to measures of gravel structure, it was found to be significantly correlated to measures of local flow velocity and Froude number. A portion of the traps were fitted with lids to restrict surface exchange of water and sediment. These collected the highest amounts of event‐mobilized sediments, indicating that inter‐gravel lateral flows, not just surface infiltration of sediments, are important in replenishing and redistributing the channel‐stored fines. These findings regarding the magnitude and direction of fine sediment movement in gravel beds are significant in both a geomorphic and a biological context. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents an analysis of up to 30 years of hydrological variables and selected water quality parameters (pH, SO4, Fe, Cu, and As) in the upper area of the Elqui River basin in North‐Central Chile. A correlation analysis determined statistically significant positive relationship for SO4‐Cu, Fe‐As, and Fe‐Cu. In terms of historical behaviour, no statistically significant trends were detected for precipitation or temperature. In contrast, for flow, there is an overall decreasing pattern for the entire area of study, although only in one case this trend was statistically significant. Along with the aforementioned analysis, a characterization of the flow‐water quality relationships is considered for the time period analyzed. Although erratic behaviours were confirmed, a negative (i.e., inverse) flow‐concentration relationship was identified for SO4, a positive (i.e., direct) relationship for Fe, and undefined relationships for As and Cu were obtained. From these analyses and based on previous studies on projections regarding climate change for the Andean region, and in particular for the upper Elqui zone, an estimation of the possible effects of the change in water regimes on water quality in the area of study is developed. It is likely that a decrease in surface flow, as a consequence of climate change could translate into improvements in water quality in terms of Fe and eventually As and Cu, but into an impairment in the case of SO4. In any case, this is a complex situation that demands special attention in the face of industrial activities that could be developed in tributaries like the Claro River, which currently play an important role in depurating or diluting contaminants in the waters of the Elqui River. Finally, it should be noted that this study addresses an issue that goes beyond the local interest and could be used as a reference to compare other transitional environments containing sulphide ores or areas of hydrothermal alterations, which are considered to be highly vulnerable to climate change and variability.  相似文献   

5.
A 2D depth‐averaged model has been developed for simulating water flow, sediment transport and morphological changes in gravel‐bed rivers. The model was validated with a series of laboratory experiments and then applied to the Nove reach of the Brenta River (Northern Italy) to assess its bed material transport, interpret channel response to a series of intensive flood events (R.I. ≈ 10 years) and provide a possible evolutionary scenario for the medium term. The study reach is 1400 m long with a mean slope of 0.0039 m m?1. High‐resolution digital terrain models were produced combining LiDAR data with colour bathymetry techniques. Extensive field sedimentological surveys were also conducted for surface and subsurface material. Data were uploaded in the model and the passage of two consecutive high intensity floods was simulated. The model was run under several hypotheses of sediment supply: one considering substantial equilibrium between sediment input and transport capacity, and the others reducing the sediment supply. The sediment supply was then calibrated comparing channel morphological changes as observed in the field and calculated by the model. Annual bed material transport was assessed and compared with other techniques. Low‐frequency floods (R.I. ≈ 1.5 years) are expected to produce negligible changes in the channel while high floods may erode banks rather than further incising the channel bed. Location and distribution of erosion and deposition areas within the Nove reach were predicted with acceptable biases stemming from imperfections of the model and the specified initial, boundary and forcing conditions. A medium‐term evolutionary scenario simulation underlined the different response to and impact of a consecutive sequence of floods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The spatial and seasonal distributions of organic matter and fine grains were tested as possible determinants of fauna distribution in bed sediment of a Hercynian gravel stream. Invertebrate densities and the amounts of fine grains and organic carbon were assessed in freeze-core samples taken along 70 cm depth profiles at three different positions in the stream channel. Sampling was conducted on five occasions of low discharge over two years. The variability in invertebrate community composition was analysed using Detrended Correspondence Analysis with posterior projection of explanatory variables; Variation Partitioning was used to estimate the independent and shared effects of the explanatory variables. We found that the best predictors of the invertebrate community were spatial variables (depth, position in the channel) and then variables influenced by seasonal patterns (surface water temperature and discharge). The influence of organic matter and fine grain content was significant only after eliminating spatial autocorrelation. High amounts of organic matter, randomly accumulated in the sediment, improved the model by explaining high fauna densities. The fine grain content was not a limiting factor to fauna at our study site. It is possible that the large amount of mica flakes in the sediment has caused the arrangement of grains with a pore space sufficient for fauna even when fine grain content was high.  相似文献   

8.
We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface–groundwater exchange than standard particle-tracking simulations.  相似文献   

9.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Soil moisture is a consideration for soil conservation, agricultural production and climate modelling. This article presents a simple method for estimating soil moisture storage under water stress and storage depletion conditions. The method is driven by the common agro‐hydrologic variables of precipitation (PPT), irrigation (IRR) and evapotranspiration (ET). The proposed method is successfully tested for the 152 000 km2 floodplain region of Hai River Basin using 48 consecutive months (2003–2006) of data. Soil moisture data from global land data assimilation system/Noah land surface model are validated with ground‐truth data from 102 soil moisture monitoring sites. The validated soil moisture is used in combination with in situ groundwater data to quantify total water storage change (TWSC) in the region. The estimated storage change is in turn compared with gravity recovery and climate experiment‐derived TWSC for the study area. The soil moisture and TWSC terms show favourable agreements, with discrepancies of < 10% on the average. While there is no consistent seasonal trend in soil moisture, TWSC shows a strong seasonality. It is low in spring and high in summer. This trend corresponds with the IRR–PPT season in the study area. Change in groundwater and total water storage indicates storage depletion in the basin. Storage depletion in the region is driven mainly by groundwater IRR and ET loss. Despite the low PPT and high ET, there is narrowing seasonal trend in soil moisture. This is achieved at the expense of groundwater storage. IRR pumping has induced extensive groundwater depletion in the basin. It is therefore vital to develop cultivation strategies that aim at limiting IRR pumping and ET loss. Water management practices that not only reduce waste but also ensure high productivity and ecological sustainability could also mitigate storage depletion in the region. These measures could reduce further not only the seasonal trend in soil moisture but also that in groundwater storage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Topographic measurements are essential for the study of earth surface processes. Three‐dimensional data have been conventionally obtained through terrestrial laser scanning or photogrammetric methods. However, particularly in steep and rough terrain, high‐resolution field measurements remain challenging and often require new creative approaches. In this paper, range imaging is evaluated as an alternative method for obtaining surface data in such complex environments. Range imaging is an emerging time‐of‐flight technology, using phase shift measurements on a multi‐pixel sensor to generate a distance image of a surface. Its suitability for field measurements has yet not been tested. We found ambient light and surface reflectivity to be the main factors affecting error in distance measurements. Low‐reflectivity surfaces and strong illumination contrasts under direct exposure to sunlight lead to noisy distance measurements. However, regardless of lighting conditions, the accuracy of range imaging was markedly improved by averaging multiple images of the same scene. For medium ambient lighting (shade) and a light‐coloured surface the measurement uncertainty was approximately 9 mm. To further test the suitability of range imaging for field applications we measured a reach of a steep mountain stream with a horizontal resolution of approximately 1 cm (in the focal plane of the camera), allowing for the interpolation of a digital elevation model on a 2 cm grid. Comparison with an elevation model obtained from terrestrial laser scanning for the same site revealed that both models show similar degrees of topographic detail. Despite limitations in measurement range and accuracy, particularly at bright ambient lighting, range imaging offers three‐dimensional data in real time and video mode without the need of post‐processing. Therefore, range imaging is a useful complement or alternative to existing methods for high‐resolution measurements in small‐ to medium‐scale field sites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We used regression analyses of water samples from 18 lakes, nine rivers, and one spring in Ethiopia to (a) test the hypothesis that water bodies of relatively higher salinity (K25>1000 μS cm−1) have a different conductivity to salinity relationship than waters of lower salinity (K25 < 1000 μS cm−1), and (b) develop models to predict total cations and salinity from conductivity that can be used for Ethiopian waters and other African aquatic systems of similar chemical composition. We found no statistical difference in the bilogarithmic relationships (total cations vs. conductivity; salinity vs. conductivity) for waters of higher salinity (K25 > 1000 μS cm−1) and waters of lower salinity (K25 < 1000 μS cm−1). However, comparison among our models and models from the literature suggests that developing separate equations for low and high salinity water bodies has some merit. We believe that the equations developed in this study can be used for Ethiopian waters and other African waters within the range of conductivity in this study.  相似文献   

13.
N. Rajmohan  L. Elango 《水文研究》2007,21(20):2698-2712
Study of the movement of water and solute within soil profiles is important for a number of reasons. Accumulation of prominent contaminants from agricultural chemicals in the unsaturated zone over the years is a major concern in many parts of the world. As a result, the unsaturated zone has been a subject of great research interest during the past decade. Hence, an intensive field study was conducted in a part of Palar and Cheyyar river basins to understand the variation of major ions and nutrients in the soil zone during paddy cultivation. The chloride and nitrate data were used to model the movement of these chemicals in the unsaturated zone using the HYDRUS‐2D model. The field study shows that fertilizer application and irrigation return flow increases the major ions and nutrients concentration in the unsaturated zone. Further, the nutrient concentrations are regulated by plant uptake, fertilizer application and infiltration rate. Additionally, denitrification and soil mineralization processes also regulate the nitrogen concentration in the unsaturated zone. The solute transport modelling study concluded that the simulated results match reasonably with the observed trends. Simulated concentrations of chloride and nitrate for a 5‐year period indicate that the concentrations of these ions fluctuate in a cyclic manner (from 60 to 68 mg l?1 and from 3·4 to 3·5 mg l?1 respectively in groundwater) with no upward and downward trend. The influence of excessive fertilizer application on groundwater was also modelled. The model predicts an increase of about 17 mg l?1 of chloride and 2·3 mg l?1 of nitrogen in the groundwater of this area when the application of fertilizers is doubled. The model indicates that the present level of use of agrochemicals is no threat to the groundwater quality. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Although 1-alkyl-2,3,6-trimethylbenzenes and a high relative amount of 1,2,3,4-tetramethylbenzene have been detected in marine oils and oil asphaltenes from Tabei uplift in the Tarim Basin, their bio-logical sources are not determined. This paper deals with the molecular characteristics of typical ma-rine oil asphaltenes from Tabei and Tazhong uplift in the Tarim Basin and the stable carbon isotopic signatures of individual compounds in the pyrolysates of these asphaltenes using flash pyrolysis-gas chromatograph-mass spectrometer (PY-GC-MS) and gas chromatograph-stable isotope ratio mass spectrometer (GC-C-IRMS), respectively. Relatively abundant 1,2,3,4-tetramethylbenzene is detected in the pyrolysates of these marine oil asphaltenes from the Tarim Basin. δ 13C values of 1,2,3,4-tetrame-thylbenzene in the pyrolysates of oil asphaltenes vary from-19.6‰ to-24.0‰, while those of n-alkanes in the pyrolysates show a range from-33.2‰ to-35.1‰. The 1,2,3,4-tetramethylbenzene in the pyro-lysates of oil asphaltenes proves to be significantly enriched in 13C relative to n-alkanes in the pyro-lysates and oil asphaltenes by 10.8‰―15.2‰ and 8.4‰―13.4‰, respectively. This result indicates a contribution from photosynthetic green sulfur bacteria Chlorobiaceae to relatively abundant 1,2,3,4-tetramethylbenzene in marine oil asphaltenes from the Tarim Basin. Hence, it can be speculated that the source of most marine oil asphaltenes from the Tarim Basin was formed in a strongly reducing water body enriched in H2S under euxinic conditions.  相似文献   

15.
Little is known about the distribution and risk levels of nutrients and organic matter(OM) in the surface sediment of shallow submerged macrophyte-dominated lakes. In the current study, sixty surface sediment samples were collected from Xukou Bay, a typical submerged macrophyte-dominated zone in Lake Taihu, China. A 60-day degradation experiment of Potamogeton malaianus, a dominant species in the bay,was done in the laboratory. The results demonstrated that the ranges of total nitrogen(TN) and t...  相似文献   

16.
Spatio‐temporal variations in nitrogen and phosphorus concentrations in groundwater were analysed and related to the variations in hydrological conditions, vegetation type and substrate in an alluvial ecosystem. This study was conducted in the Illwald forest in the Rhine Plain (eastern France) to assess the removal of nutrients from groundwater in a regularly flooded area. We compared both forest and meadow ecosystems on clayey‐silty soils with an anoxic horizon (pseudogley) at 1·5–2 m depth (eutric gley soil) and a forest ecosystem on a clayey‐silty fluviosoil rich in organic matter with a gley at 0·5 m depth (calcaric gley soil). Piezometers were used to measure the nutrient concentrations in the groundwater at 2 m depth in the root layer and at 4·5 m depth, below the root layer. Lower concentrations of nitrate and phosphate in groundwater were observed under forest than under meadow, which could be explained by more efficient plant uptake by woody species than herbaceous plants. Thus NO3‐N inputs by river floods were reduced by 73% in the shallow groundwater of the forested ecosystem, and only by 37% in the meadow. Compared with the superficial groundwater layer, the lowest level of nitrate nitrogen (NO3‐N) and the highest level of ammonium nitrogen (NH4‐N) were measured in the deep layer (under the gley horizon at 2·5 m depth), which suggests that the reducing potential of the anoxic horizon in the gley soils contributes to the reduction of nitrate. Nitrate concentrations were higher in the groundwater of the parcel rich in organic matter than in the one poorer in organic matter. Phosphate (PO4‐P) concentrations in both shallow and deep groundwater are less than 62 to 76% of those found in surface water which can be related to the retention capacity of the clay colloids of these soils. Moreover, the temporal variations in nutrient concentrations in groundwater are directly related to variations in groundwater level during an annual hydrological cycle. Our results suggest that variations in groundwater level regulate spatio‐temporal variations in nutrient concentrations in groundwater as a result of the oxidation–reduction status of soil, which creates favourable or unfavourable conditions for nutrient bioavailability. The hydrological variations are much more important than those concerning substrate and type of vegetation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
David Dunkerley 《水文研究》2008,22(22):4415-4435
In hydrology and geomorphology, less attention has been paid to rain event properties such as duration, mean and peak rain rate than to rain properties such as drop size or kinetic energy. A literature review shows a lack of correspondence between natural and simulated rain events. For example, 26 studies that report event statistics from substantial records of natural rain reveal a mean rain rate of just 3·47 mm h?1 (s.d. 2·38 mm h?1). In 17 comparable studies dealing with extreme rain rates including events in cyclonic, tropical convective, and typhoon conditions, a mean maximum rain rate (either hourly or mean event rain rate) of 86·3 mm h?1 (s.d. 57·7 mm h?1) is demonstrated. However, 49 studies using rainfall simulation involve a mean maximum rain rate of 103·1 mm h?1 (s.d. 81·3 mm h?1), often sustained for > 1 h, exceeding even than of extreme rain events, and nearly 30 times the mean rain rate in ordinary, non‐exceptional, rain events. Thus rainfall simulation is often biased toward high rain rates, and many of the rates employed (in several instances exceeding 150 mm h?1) appear to have limited relevance to ordinary field conditions. Generally, simulations should resemble natural rain events in each study region. Attention is also drawn to the raindrop arrival rate at the surface. In natural rain, this is known to vary from < 100 m?2 s?1 to > 5000 m?2 s?1. Arrival rate may need to be added to the list of parameters that must be reproduced realistically in rainfall simulation studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Water level fluctuations due to reservoir operations often cause spatial and temporal differences in water chemistry, which in turn can have considerable biological effects. Nonetheless, few studies have investigated the effects of fluctuating water levels on water quality and benthic macroinvertebrates in reservoirs in tropical countries, and none in the Philippine archipelago. We investigated the littoral zone of a Philippine reservoir subject to strong water level fluctuations and determined whether (i) water quality and macroinvertebrate community health is reduced when water levels are low, (ii) water quality declines with increasing water depth regardless of the overall water level, and (iii) water quality and community health decrease more strongly with water depth during low water level periods. Our study included five sites and four depths at each site, with three collections each during high and low water levels. Low water levels may have negatively affected four water quality and 10 biological metrics, whereas depth may have negatively affected two water quality and five biological metrics. Significant overall water levels by depth interactions were detected for four common taxa but none for water physicochemistry. Our findings show that tropical reservoirs may experience reduced water quality at low water levels, which can affect their biodiversity and potentially their ecological functioning.  相似文献   

19.
During past decades, a diverse system of subsistence agriculture in south‐east Spain (annual rainfall of less than 300 mm) has been overturned in favour of large‐scale plantations of almond trees without consideration for topography and related spatial patterns in soil hydrological properties. The objective of this paper is to investigate the spatial pattern in soil physical properties induced by this cultivation system, and to highlight its impact on the water balance. Soil properties were recorded along hillslopes with shallow soils developed on slates and greywackes in the upper part of the Guadelentin drainage basin (Murcia region). Frequent tillage of these almond plantations covering entire hillslopes has resulted in denudation by tillage erosion on the topographic convexities, as well as transport of rock fragments and fine earth along the slopes. These processes have created a systematic spatial pattern of soil thickness and rock fragment content: shallow and stony soils on the topographic convexities and deep soils with a rock fragment mulch in the concavities at the foot of the slopes. At the same time, a negative relationship between rock fragment content and fine earth bulk density was observed. The impact of this spatial pattern in soil properties on the water balance was evaluated using the PATTERN one‐dimensional hydrological and plant growth model. The model simulates the water balance of soil profiles covering the observed variation in soil thickness, stoniness and bulk density. The model results indicate that the highest rates of infiltration, evaporation and drainage, as well as the lowest rates of overland flow are restricted to shallow soils on the hilltops. In contrast, the deeper soils in the valley bottoms produce a more stable moisture regime than shallower soils, which tend to saturate and dry out quickly. These model results are in agreement with the spatial patterns of almond productivity: an asymptotic increase with soil thickness. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Western Anatolia, largely affected by extensional tectonics, witnessed widespread volcanic activity since the Early Miocene. The volcanic vents of the region are represented by epicontinental calderas, stratovolcanoes and monogenetic vents which are associated with small-scale intrusions as sills and dykes. The volcanic activity began with an explosive character producing a large ignimbritic plateau all over the region, indicating the initiation of the crustal extension event. These rhyolitic magmas are nearly contemporaneous with granitic intrusions in western Anatolia. The ignimbrites, emplaced approximately contemporaneous with alluvial fan and braided river deposits, flowed over the basement rocks prior to extensional basin formation. The lacustrine deposits overlie the ignimbrites. The potassic and ultrapotassic lavas with lamprophyric affinities were emplaced during the Late Miocene–Pliocene. The volcanic activities have continued with alkali basalts during the Quaternary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号