首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferromanganese rock varnish in north Norway: A subglacial origin   总被引:1,自引:0,他引:1  
A thin, dark brown rock varnish is described from ice-smoothed bedrock on the forefield of a glacier in North Norway. It occurs only in narrow strips (ca 100 mm or less wide) which run roughly parallel to the ice front and along the top edges of small treads of a series of bedrock steps. The varnish is hard, thin (< 10 μm) and consists of an iron/manganese deposit, greatly enriched in these elements compared with the composition of the underlying gabbroic bedrock. It is suggested that the varnish formation is due to localized changes in Eh/pH conditions in subglacial regelation ice and meltwater at the top of the bedrock steps. These changes may be due to CO2 and/or O2 degassing from water held at higher pressures under the ice than in cavities downstream where the ice is decoupled from the bedrock. Glacier retreat rates indicate that the varnish has remained exposed subaerially at the surface for about twenty years, and its restricted occurrence suggests that it is not of biological origin but rather is essentially authigenic. Possible subglacial origins for associated iron and silica precipitates are also suggested.  相似文献   

2.
A series of trenches about a metre deep, 20 to 30 m wide, and as much as 2 km in length occurs in central Wisconsin, along the east shore of proglacial Lake Wisconsin. They are interpreted to be collapse trenches formed when shore ice melted after being buried beneath an expanding outwash plain.  相似文献   

3.
Glacier recession and landform development in a debris‐charged glacial landsystem characterized by an overdeepening is quantified using digital photogrammetry, digital elevation model (DEM) construction and mapping of the Icelandic glacier Kvíárjökull for the period 1945–2003. Melting of ice‐cores is recorded by surface lowering rates of 0·8 m yr–1 (1945–1964), 0·3 m yr–1 (1964–1980), 0·015 m yr–1 (1980–1998) and 0·044 m yr–1 (1998–2003). The distribution/preservation of pushed and stacked ice‐cored moraine complexes are determined by the location of the long‐term glacial drainage network in combination with retreat from the overdeepening, into which glacifluvial sediment is being directed and where debris‐rich ice masses are being reworked and replaced by esker networks produced in englacial meltwater pathways that bypassed the overdeepening and connected to outwash fans prograding over the snout. Recent accelerated retreat of Kvíárjökull, potentially due to increased mass balance sensitivity, has made the snout highly unstable, especially now that the overdeepening is being uncovered and the snout flooded by an expanding pro‐glacial, and partially supraglacial, lake. This case study indicates that thick sequences of debris‐charged basal ice/controlled moraine have a very low preservation potential but ice‐cored moraine complexes can develop into hummocky moraine belts in de‐glaciated terrains because they are related to the process of incremental stagnation, which at Kvíárjökull has involved periodic switches from transport‐dominant to ablation‐dominant conditions. Glacier recession is therefore recorded temporally and spatially by two suites of landforms relating to two phases of landform production which are likely typical for glaciers occupying overdeepenings: an early phase of active, temperate recession recorded by push moraines and lateral moraines and unconfined pro‐glacial meltwater drainage; and a later phase of incremental stagnation and pitted outwash head development initiated by the increasing topographic constraints of the latero‐frontal moraine arc and the increasing importance of the overdeepening as a depo‐centre. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Moss and grass remains associated with a well-developed in situ palaeosol buried beneath a moraine ridge in front of Nigardsbreen (Jostedalsbreen ice cap, southern Norway) have been 14C-dated. Pollen preserved with the plant remains suggests the existence of an agricultural landscape prior to the deposition of the moraine. The calibrated dates and the pollen spectra are in close accord with historically-documented evidence for the timing and palaeoenvironment of the ‘Little Ice Age’ advance of the glacier. Considerable potential is indicated for estimating the maximum ages of moraine ridges and for palaeoenvironmental reconstruction where such documentary evidence does not exist.  相似文献   

5.
An examination of the lithology, paleomagnetic and Mossbauer Effect Spectroscopy (MES) log data and 14C determinations of cores taken from three small basins located in western Lake Erie, in conjunction with data obtained from earlier studies, has been used to re-evaluate the postglacial history of the area. After the re-advance of the Laurentide Ice Sheet into the Huron basin and the eastern part of the Erie basin during the Port Huron stadial about 13,000 yrs B.P., lacustrine clay was deposited across much of the western Erie basin in a lake ponded against the glacial ice front to the east. However, by 12,000 yrs B.P. as the ice front retreated, the waters from the Huron basin bypassed Lake Erie, first by the Kirkfield outlet to Lake Ontario, and later by the Fossmill and North Bay outlets to the Ottawa River. This resulted in the draining of water from most of the western Erie basin. Extensive swamps choked with plants formed in the small basin areas, and the surrounding low-lying former lake bottom was subjected to subaerial weathering. It would appear that by about 9,500 yrs B.P. there was an increase in surface run off into these basins and the swamps evolved into shallow, relatively warm-water lakes in which calcareous-rich clay was deposited. Isostatic rebound of the northeastern outlets of the Huron basin led to a gradual tilting of the basin and a progressive migration of the southern shoreline of Lake Huron (Lake Stanley phase) to the southwest. By about 5000 yrs B.P. the water level in the southern Huron basin had been raised sufficiently to re-open the Port Huron outlet into the Erie basin. This resulted in a substantial rise in the lake level in the Erie basin, terminated the deposition of calcareous-rich clay in the small basins, and led to the deposition of normal lacustrine sediments in the modern phase of Lake Erie.  相似文献   

6.
A simple box model of the circulation into and inside the ocean cavern beneath an ice shelf is used to estimate the melt rates of Antarctic glaciers and ice shelves. The model uses simplified cavern geometries and includes a coarse parameterization of the overturning circulation and vertical mixing. The melting/freezing physics at the ice shelf/ocean interface are those usually implemented in high-resolution circulation models of ice shelf caverns. The model is driven by the thermohaline inflow conditions and coupling to the heat and freshwater exchanges at the sea surface in front of the cavern. We tune the model for Pine Island Glacier and then apply it to six other major caverns. The dependence of the melting rate on thermohaline conditions at the ice shelf front is investigated for this set of caverns, including sensitivity studies, alternative parameterizations, and warming scenarios. An analytical relation between the melting rate and the inflow temperature is derived for a particular model version, showing a quadratic dependence of basal melting on small values of the temperature of the inflow, which changes to a linear dependence for larger values. The model predicts melting at all ice shelf bases in agreement with observations, ranging from below a meter per year for Ronne Ice Shelf to about 25 m/year for the Pine Island Glacier. In a warming scenario with a one-degree increase of the inflow temperature, the latter glacier responds with a 1.4-fold increase of the melting rate. Other caverns respond by more than a tenfold increase, as, e.g., Ronne Ice Shelf. The model is suitable for use as a simple fast module izn coarse large-scale ocean models.  相似文献   

7.

Glacier is a special medium which can conserve a long time chronological information of microorganism. As a preliminary research, from Ice Core3 of Malan glacier (91°45.3′ E, 35°48.4′ N; drilled at 5620 m a.s.l.), we successfully isolated live microorganisms. 75 strains of bacteria in 10 genera and 6 strains of actinomycetes in 2 genera were isolated from 23 samples. 32 strains bacteria were identified to beBacillus and 25 strains wereB. circulans, B. firmus, B. subtilis andB. alvei. The genera of bacteria in Malan ice core were similar to that in Greenland and Antarctic ice core. We cannot isolate fungi and alga from Malan ice core, although they are widely distributed in Greenland and Antarctica.

  相似文献   

8.
Over 1000 m of fluvial molasse, exhibiting a stable detrital remanent magnetization, is exposed in a mammal-bearing sequence in the Upper Siwalik Group of the Pabbi Hills, Pakistan. The magnetic polarity chronology reveals that the sequence records a time period of 2.6 m.y., extending from the early Gauss Normal Epoch into the Brunhes Normal Epoch. During this period, sedimentation rates increased upward in time from 0.25 m/1000 yr to 0.45 m/1000 yr. The sudden disappearance of red beds and a change in the lithoclastic composition of basal channel sands suggests that about 800,000 years ago the primary source area began shifting from the metamorphic terrane of the Himalayan Orogen to a more local sedimentary terrane on the folded margins of the Himalayan foredeep. About 500,000 years ago the anticlinal Pabbi Hills attained surface expression. Uplift continued at a minimum rate of 1 m/1000 yr.A local Pliocene/Pleistocene boundary based on the Olduvai Normal Event is clearly recognized. Local fossil finds reveal thatEquus, diagnostic element of the Pinjor faunal zone, appeared locally about 1.8 m.y. ago and thatHipparion, a faunal element of the Tatrot and earlier faunal zones, persisted locally until at least 3.0 m.y. ago.  相似文献   

9.
The ongoing regression of sea ice cover is expected to significantly affect the fate of organic carbon over the Arctic continental shelves. Long-term moored sediment traps were deployed in 2005–2006 in the Beaufort Sea, Northern Baffin Bay and the Laptev Sea to compare the annual variability of POC fluxes and to evaluate the factors regulating the annual cycle of carbon export over these continental shelves. Annual POC fluxes at 200 m ranged from 1.6 to 5.9 g C m−2 yr−1 with the highest export in Northern Baffin Bay and the lowest export over the Mackenzie Shelf in the Beaufort Sea. Each annual cycle exhibited an increase in POC export a few weeks before, during, or immediately following sea ice melt, but showed different patterns over the remainder of the cycle. Enhanced primary production, discharge of the Lena River, and resuspension events contributed to periods of elevated POC export over the Laptev Sea slope. High POC fluxes in Northern Baffin Bay reflected periods of elevated primary production in the North Water polynya. In the Beaufort Sea sediment resuspension contributed to most of the large export events. Our results suggest that the outer shelf of the Laptev Sea will likely sustain the largest increase in POC export in the next few years due to the large reduction in ice cover and the possible increase in the Lena River discharge. The large differences in forcing among the regions investigated reinforce the importance of monitoring POC fluxes in the different oceanographic regimes that characterize the Arctic shelves to assess the response of the Arctic Ocean carbon cycle to interannual variability and climate change.  相似文献   

10.

Physical oceanography measurements reveal a strong salinity (0.18 psu km−1) and temperature (0.07 °C km−1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.

  相似文献   

11.
Abstract

Sudden rapid advances or surges of glaciers and sections of smail ice caps are well known. After remaining dormant or in retreat over long periods of time these ice masses suddenly move forward rapidly with speeds about 2 orders of magnitude greater than usual. If such surges were to occur in large sections of the Antarctic ice sheet serious consequences could result. These include a significant rise of sea level, a substantial increase in the high-albedo ice cover around the continent especially in summer, and a cooling of the Antarctic ocean by the additional ice melting.

A numerical model has now been developed which simulates surging in certain glaciers and ice sheets in an apparently realistic manner. This model has been found to give close representations to a number of existing real surging temperate ice masses from small mountain glaciers to large sectors of ice caps. The model reproduces realistically many features of these ice masses such as the period of the surge, the duration, the velocity of advance, the magnitude of the advance, and the changes in ice thickness.

The application of the model to the Antarctic ice sheet is made more difficult by the problem caused by the temperature dependence of the flow properties of ice. This means that for a complete study the interaction with the environment needs to be considered. However, at this stage preliminary calculations indicate a number of features that are relevant to the effect of Antarctic ice surges on the global climate. These include the period between surges, the duration of the surge, the amount of ice advanced and the changes in thickness of the ice sheet.  相似文献   

12.
We present an investigation of changes taking place on the Columbia Glacier, a lake-terminating outlet of the Columbia Icefield in the Canadian Rockies. The Columbia Icefield is the largest, and one of the most important, ice bodies in the Canadian Rockies. Like other ice masses, it stores water as snow and ice during the winter and releases it during warmer summer months, sustaining river flows and the ecosystems that rely on them. However, the Columbia Glacier and Icefield is shrinking. We use Landsat and Sentinel-2 imagery to show that the Columbia Glacier has retreated increasingly rapidly in recent years, and suggest that this looks set to continue. Importantly, we identify a previously undocumented process that appears to be playing an important role in the retreat of this glacier. This process involves the ‘detachment’ of the glacier tongue from its accumulation area in the Columbia Icefield. This process is important because the tongue is cut off from the accumulation area and there is no replenishment of ice that melts in the glacier's ablation area by flow from upglacier. As a consequence, for a given rate of ablation, the ice in the tongue will disappear much faster than it would if the local mass loss by melting/calving was partly offset by mass input by glacier flow. Such a change would alter the relationship between rates of surface melting and rates of glacier frontal retreat. We provide evidence that detachment has already occurred elsewhere on the Columbia Icefield and that it is likely to affect other outlet glaciers in the future. Modelling studies forecast this detachment activity, which ultimately results in a smaller ‘perched’ icefield without active outlets. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

Aerial photographs of the Cotopaxi Volcano ice cap dating from 1956 to 1997 were used to quantify the evolution of the surface area. Results were obtained using precise stereoscopic methods that give the most accurate information. In addition four specific glacier tongues were investigated in detail to measure the ice mass lost between 1976 and 1997. Surprisingly, the bedrock morphology is shown to be very irregular and this explains a large extent of the variability found in the ice losses. The results show that glaciers stagnated from 1956 to 1976 and lost about 30% of their surface area between 1976 and 1997. Slope exposure did not seem to have any significant effect since all the glaciers of the volcano retreated in the same proportion. In accordance with specific measurements performed on the nearby Antizana 15 Glacier, it is suggested that the strong recession observed after 1976 was associated with increasing melting conditions which have occurred repeatedly during the intense/long-duration warm ENSO phases.  相似文献   

14.
Wang  Xuezhu  Wang  Qiang  Sidorenko  Dmitry  Danilov  Sergey  Schr&#;ter  Jens  Jung  Thomas 《Ocean Dynamics》2012,62(10):1471-1486

The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work, the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to increased freshwater input from Greenland Ice Sheet (GrIS) melting in a 0.1-Sv discharge rate scenario. The variability of the Atlantic Meridional Overturning Circulation (AMOC) in the hindcast experiment can be explained by the variability of the thermohaline forcing over deep convection sites. The model also reproduces realistic freshwater content variability and sea ice extent in the Arctic Ocean. The anomalous freshwater in the water-hosing experiment leads to significant changes in the ocean circulation and local dynamical sea level (DSL). The most pronounced DSL rise is in the northwest North Atlantic as shown in previous studies, and also in the Arctic Ocean. The released GrIS freshwater mainly remains in the North Atlantic, Arctic Ocean and the west South Atlantic after 120 model years. The pattern of ocean freshening is similar to that of the GrIS water distribution, but changes in ocean circulation also contribute to the ocean salinity change. The changes in Arctic and sub-Arctic sea level modify exchanges between the Arctic Ocean and subpolar seas, and hence the role of the Arctic Ocean in the global climate. Not only the strength of the AMOC, but also the strength of its decadal variability is notably reduced by the anomalous freshwater input. A comparison of FESOM with results from previous studies shows that FESOM can simulate past ocean state and the impact of increased GrIS melting well.

  相似文献   

15.
The evolution of interocean carbon isotopic gradients over the last 2.5 m.y. is examined using high-resolution δ13C records from deep sea cores in the Atlantic and Pacific Oceans. Over much of the Northern Hemisphere ice ages, relative reductions in North Atlantic Deep Water production occur during ice maxima. From 2.5 to 1.5 Ma, glacial reductions in NADW are less than those observed in the late Pleistocene. Glacial suppression of NADW intensified after 1.5 Ma, earlier than the transition to larger ice sheets around 0.7 Ma. At a number of times during the Pleistocene, δ13C values at DSDP Site 607 in the North Atlantic were indistinguishable from eastern equatorial Pacific δ13C values from approximately the same depth (ODP Site 677), indicating significant incursions of low δ13C water into the deep North Atlantic. Atlantic/Pacific δ13C values converge during glaciations between 1.13-1.05 m.y., 0.83-0.70 m.y., and 0.46-0.43 m.y. This represents a pseudo-periodicity of approximately 300 kyr which cannot easily be ascribed to global ice volume or orbital forcing. This partial decoupling, at low frequencies, of the δ18O and δ13C signals at Site 607 indicates that variations in North Atlantic deep water circulation cannot be viewed simply as a linear response to ice sheet forcing.  相似文献   

16.
Radar surveys of Bench Glacier, Alaska, collected over five field seasons between 2002 and 2006 reveal a surface layer of radar transparent ice in this temperate valley glacier. The transparent layer covers the up‐glacier half of the ablation zone and is defined by a distinct lack of the radar scattering events considered typical of temperate ice. Radar scattering ice underlies the transparent zone, and extends to the surface elsewhere on the glacier. We observed the layering in constant offset radar surveys conducted with characteristic frequencies ranging from 5 MHz to 100 MHz. The radar transparent layer extends from the surface to 20 m depth on average, but up to 50 m in some places. Bench Glacier's transparent layer appears similar to the cold surface layer of polythermal glaciers, however, observations in over 50 boreholes on Bench Glacier suggest there is no cold ice corresponding to the radar transparent layer. We conclude that spatially extensive radar‐transparent layers normally used to identify cold ice in polythermal glaciers are present in some temperate glaciers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
《水文科学杂志》2013,58(1):278-291
Abstract

Hydrological and glaciological data were gathered in the watershed (1.37 km2) of the Antizana Glacier 15 (0.7 km2) in the periods 1997–2002 and 1995–2005, respectively. In addition, tracer experiments were carried out to analyse the flow through permeable morainic deposits located between the glacier snout and the runoff gauging station. Over 11 years, the mean specific net balance of the glacier was negative (–627 mm w.e.), despite the occurrence of positive values in the La Niña years (1999–2000). From the glacier net mass balance between 1997 and 2002, it was found that the mean flow originating from ice melt was significantly higher than the mean discharge measured at the hydrological station. Analyses of tracer experiments and of the different components of the hydrological balance suggest groundwater flow that originates below the glacier accounts for the remaining water. This result is important for regional analyses of available water resources and for the relationship between hydro-cryospheric processes and volcanic activity.  相似文献   

18.
High-resolution seismic data (onshore and offshore), geophysical borehole data as well as detailed lithofacies from airlift boreholes were acquired in northern Netherlands on and around the island of Ameland. Marine and land seismic data combined with information from land boreholes have been explored with the objective of providing a sedimentary model. Qualitative seismic facies analysis of the valley fill commonly shows a thin unit with high amplitude reflectors at the base. Thick units of variable seismic facies (transparent to high amplitude) occur higher up in the sequence. Onlap is common at mid–upper levels within the sandy valley fill (with clay in mm layering), and a transparent seismic facies, corresponding to firm clays, is common at the top. Almost all lithological unit boundaries recognised within core parameters correspond with seismic unconformities within error margins. Subunits contain multiple cyclical trends in gamma ray and grain size. Cyclical trends show lower order fluctuations in gamma radiation on a scale of less than 1 m. Gamma-ray pattern variability between units, e.g. in general coarsening-up or fining-up units, suggests migration of subaqueous outwash fans or ice margin fluctuations. Seismic results could support a headward excavation and backfilling process suggested by Praeg [Morphology, stratigraphy and genesis of buried Elsterian tunnel valleys in the southern North Sea basin [PhD thesis]: University of Edinburgh, 207 pp.; Journal of Applied Geophysics, (this volume)] as being responsible for the formation of buried valleys. On a lithological scale, a more complicated, detailed and cyclical pattern arises. Catastrophic processes are considered unlikely as being responsible for the infill sequence because of the observed small-scale facies variability and because of the presence of diamicton layers. Diamicton layers at the base of basal unconformities as well as higher in sequence could suggest subglacial deformation by grounded ice before and during the valley-fill process.  相似文献   

19.
Dye tracing techniques were used to investigate the glacier-wide pattern of change in the englacial/subglacial drainage system of Haut Glacier d'Arolla during the ablation seasons of 1990 and 1991. Analysis of breakthrough curve characteristics indicate that over the course of a melt season, a system of major channels developed by headward growth at the expense of a hydraulically inefficient distributed system. By the end of the melt season, this channel system extended at least 3·3 km from the snout of the 4 km long glacier and drained the bulk of supraglacially derived meltwater passing through the glacier. The upper limit of the channel system closely followed the retreating snowline up-glacier. Rates of headward channel growth reached c. 65 m d−1, although these rates decreased in the upper 1 km of the glacier where snowline retreat exposed a patchy firn aquifer. It appears that the removal of snow (with its high albedo and significant water storage capacity) from the glacier surface resulted in a dramatic increase in the volume of runoff into moulins, and in the peakedness of daily runoff cycles. This induced transient high water pressures within the distributed drainage system, which caused it to evolve rapidly into a channelised system. It is therefore likely that, at a local scale, channel growth occurred down-glacier from moulins, and that the overall up-glacier-directed pattern of channel formation was caused by the retreating snowline exposing new moulins and crevasses to inputs of ice-derived meltwater. Damping of diurnal melt inputs by storage in the firm aquifer accounts for the slowing of channel growth in the upper glacier. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

An overall retreat of glaciers has been observed in the Andes of central Chile during the last ~100 years. Precipitation is mainly of frontal origin and concentrates in winter months. Analysis of precipitation data shows a decrease until 1976, an increase thereafter north of 34°S and a decrease south of 34°S, but overall no significant trends during the last quarter of the 20th century. Analysis of radiosonde data of central Chile shows mid-tropospheric warming with an elevation increase of the 0°C isotherm of 122 ± 8 m and 200 ± 6 m in winter and summer, respectively, during the 27-year period between 1975 and 2001. The results point to a snowline elevation increase in the region during the last quarter of the 20th century and a concurrent rise of the equilibrium line altitude (ELA) and suggest that mid-troposphere warming is the main cause for glacier retreat in central Chile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号