首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《水文科学杂志》2013,58(1):66-82
Abstract

An adaptive model for on-line stage forecasting is proposed for river reaches where significant lateral inflow contributions occur. The model is based on the Muskingum method and requires the estimation of four parameters if the downstream rating curve is unknown; otherwise only two parameters have to be determined. As the choice of the forecast lead time is linked to wave travel time along the reach, to increase the lead time, a schematization of two connected river reaches is also investigated. The variability of lateral inflow is accounted for through an on-line adaptive procedure. Calibration and validation of the model were carried out by applying it to different flood events observed in two equipped river reaches of the upper-middle Tiber basin in central Italy, characterized by a significant contributing drainage area. Even if the rating curve is unknown at the downstream section, the forecast stage hydrographs were found in good agreement with those observed. Errors in peak stage and time to peak along with the persistence coefficient values show that the model has potential as a practical tool for on-line flood risk management.  相似文献   

2.
Abstract

This work critically assesses the storage, or hydrological methods of flood routing, focusing on the Muskingum and Kalinin-Miljukov methods. The common hydraulic basis of these methods and their inter-relationships are established, emphasising hydraulic derivations of the Muskingum method's weighting coefficient. Important characteristics of the routing scheme are highlighted, especially the scheme's affinity to the pseudo-viscosity method of shock computation; the flow-dependence (nonlinearity) of routing parameters is analysed, as are mass balance errors. Options in calculating depths and in handling lateral flows are presented. Storage routing models are shown to be instances of a numerically equivalent convection—diffusion equation or kinematic wave-derived convection—diffusion routing model that is also able to relate depth and discharge at-a-section via loop-shaped rating curves; the consequences of ignoring the rating curves' transience are pointed out. System analytic parameter estimations are summarised, a routing option with direct use of the diffusion wave system response function (SRF) is reviewed, the selection of routing reaches based on the river morphology is discussed, and the extension of storage-type routing to mass transport simulation is indicated.  相似文献   

3.
Abstract

Pooling of flood data is widely used to provide a framework to estimate design floods by the Index Flood method. Design flood estimation with this approach involves derivation of a growth curve which shows the relationship between XT and the return period T, where XT ?=?QT /QI and QI is the index flood at the site of interest. An implicit assumption with the Index Flood procedure of pooling analysis is that the XT T relationship is the same at all sites in a homogeneous pooling group, although this assumption would generally be violated to some extent in practical cases, i.e. some degree of heterogeneity exists. In fact, in only some cases is the homogeneity criterion effectively satisfied for Irish conditions. In this paper, the performance of the index-flood pooling analysis is assessed in the Irish low CV (coefficient of variation) hydrology context considering that heterogeneity is taken into account. It is found that the performance of the pooling method is satisfactory provided there are at least 350 station years of data included. Also it is found that, in a highly heterogeneous group, it is more desirable to have many sites with short record lengths than a smaller number of sites with long record lengths. Increased heterogeneity decreases the advantage of pooling group-based estimation over at-site estimation. Only a heterogeneity measure (H1) less than 4.0 can render the pooled estimation preferable to that obtained for at-site estimation for the estimation of 100-year flood. In moderately to highly heterogeneous regions it is preferable to conduct at-site analysis for the estimation of 100-year flood if the record length at the site concerned exceeds 50.

Editor Z.W. Kundzewicz; Associate editor A. Carsteanu

Citation Das, S. and Cunnane, C., 2012. Performance of flood frequency pooling analysis in a low CV context. Hydrological Sciences Journal, 57 (3), 433–444.  相似文献   

4.
Abstract

An updating technique is a tool to update the forecasts of mathematical flood forecasting model based on data observed in real time, and is an important element in a flood forecasting model. An error prediction model based on a fuzzy rule-based method was proposed as the updating technique in this work to improve one- to four-hour-ahead flood forecasts by a model that is composed of the grey rainfall model, the grey rainfall—runoff model and the modified Muskingum flow routing model. The coefficient of efficiency with respect to a benchmark is applied to test the applicability of the proposed fuzzy rule-based method. The analysis reveals that the fuzzy rule-based method can improve flood forecasts one to four hours ahead. The proposed updating technique can mitigate the problem of the phase lag in forecast hydrographs, and especially in forecast hydrographs with longer lead times.  相似文献   

5.
Abstract

The seasonal flood-limited water level (FLWL), which reflects the seasonal flood information, plays an important role in governing the trade-off between reservoir flood control and conservation. A risk analysis model for flood control operation of seasonal FLWL incorporating the inflow forecasting error was proposed and developed. The variable kernel estimation is implemented for deriving the inflow forecasting error density. The synthetic inflow incorporating forecasting error is simulated by Monte Carlo simulation (MCS) according to the inflow forecasting error density. The risk analysis for seasonal FLWL control was estimated by MCS based on a combination of the forecasting inflow lead-time, seasonal design flood hydrographs and seasonal operation rules. The Three Gorges reservoir is selected as a case study. The application results indicate that the seasonal FLWL control can effectively enhance flood water utilization rate without lowering the annual flood control standard.
Editor D. Koutsoyiannis; Associate editor A. Viglione

Citation Zhou, Y.-L. and Guo, S.-L., 2014. Risk analysis for flood control operation of seasonal flood-limited water level incorporating inflow forecasting error. Hydrological Sciences Journal, 59 (5), 1006–1019.  相似文献   

6.
Abstract

The hydrodynamic derivation of a variable parameter Muskingum method and its solution procedure for estimating a routed hydrograph were presented in Part I of this series (Perumal, 1994a). In this paper, the limitations of the method, the criterion for its applicability and its accuracy are discussed based on the assumptions used. The method is verified by routing a given hypothetical inflow hydrograph through uniform rectangular cross-section channels and comparing the results with the corresponding numerical solutions of the St. Venant equations. The stage hydrographs as computed by the method are also compared with the corresponding St. Venant solutions. It is demonstrated that the method closely reproduces the St. Venant solutions for the discharge and stage hydrographs subject to the compliance of the assumptions of the method by the routing process.  相似文献   

7.
淮河具有行蓄洪区河系洪水预报水力学模型研究   总被引:5,自引:0,他引:5  
针对淮河流域河系特点,建立淮河具有行蓄洪区河系洪水预报模型.干流河道洪水演进采用一维水动力学模型,钐岗分流量利用分流曲线法推求,利用虚拟线性水库法解决大洪水时支流洪水受干流顶托作用,临淮岗闸作为水力学模型的内边界条件进行处理,利用分流比法概化行洪过程,行洪区内只有蓄满时,才会有出流,行洪区内的洪水利用Muskingum...  相似文献   

8.
Abstract

The Lortz dynamo with helical symmetry is re-examined. It is shown that by imposing appropriate boundary conditions the set of possible solutions can be broken down into various classes characterized by the behavior of the mean magnetic field. It is found that, as the cylindrical radius, s, tends to zero, <BΦ> ~ 0(sj), <Bz> ~ const + 0(sj?i), where j>5. It is proved that the azimuthal wavenumber associated with the j=5 class is necessarily equal to 2. The existence of at least one cylindrical surface inside which the dynamo is self-sustained is demonstrated. A new simple explicit solution is obtained. The topology the magnetic field is studied and three-dimensional pictures of the magnetic field lines are exhibited. Finally, a criterion for reversal of the magnetic field as a function of radius is ohtained and is applied to our solution.  相似文献   

9.
针对现有的河道水流洪水演算模型只能模拟单一变量(流量或水位)的问题,以水流连续方程和河段蓄水量的两种不同表达形式(蓄水量等于平均过水断面面积与河段长乘积,蓄水量等于河段平均流量与传播时间的乘积)为基础,对马斯京根模型进行了通用性改进,提出了双变量耦合通用演算模型.选取了四大水系(包括内陆河流和入海河流)的16个河段汛期洪水资料进行模型检验,模型验证考虑了地理范围、不同的河段特征和水力特征、洪水量级等因素,全面地检验了模型结构的合理性和模拟实际洪水的有效性.将双变量耦合通用演算模型与传统的马斯京根法进行了效果比较,结果表明双变量耦合通用演算模型的模拟精度高于马斯京根法,模拟效果比马斯京根法稳定一些,而且具有较好的通用性.  相似文献   

10.
Abstract

Rivers have been channelized, deepened and constrained by embankments for centuries to increase agricultural productivity and improve flood defences. This has decreased the hydrological connectivity between rivers and their floodplains. We quantified the hydrological regime of a wet grassland meadow prior to and after the removal of river embankments. River and groundwater chemistry were also monitored to examine hydrological controls on floodplain nutrient status. Prior to restoration, the highest river flows (~2 m3 s?1) were retained by the embankments. Under these flow conditions the usual hydraulic gradient from the floodplain to the river was reversed so that subsurface flows were directed towards the floodplain. Groundwater was depleted in dissolved oxygen (mean: 0.6 mg O2 L?1) and nitrate (mean: 0.5 mg NO3 ?-N L?1) relative to river water (mean: 10.8 mg O2 L?1 and 6.2 mg NO3 ?-N L?1, respectively). Removal of the embankments has reduced the channel capacity by an average of 60%. This has facilitated over-bank flow which is likely to favour conditions for improved flood storage and removal of river nutrients by floodplain sediments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Clilverd, H.M., Thompson, J.R., Heppell, C.M., Sayer, C.D., and Axmacher, J.C., 2013. River–floodplain hydrology of an embanked lowland Chalk river and initial response to embankment removal. Hydrological Sciences Journal, 58 (3), 627–650.  相似文献   

11.
Abstract

In a typical reservoir routing problem, the givens are the inflow hydrograph and reservoir characteristic functions. Flood attenuation investigations can be easily accomplished using a hydrological or hydraulic routing of the inflow hydrograph to obtain the reservoir outflow hydrograph, unless the inflow hydrograph is unavailable. Although attempts for runoff simulation have been made in ungauged basins, there is only a limited degree of success in special cases. Those approaches are, in general, not suitable for basins with a reservoir. The objective of this study is to propose a procedure for flood attenuation estimation in ungauged reservoir basins. In this study, a kinematic-wave based geomorphic IUH model was adopted. The reservoir inflow hydrograph was generated through convolution integration using the rainfall excess and basin geomorphic information. Consequently, a fourth-order Runge-Kutta method was used to route the inflow hydrograph to obtain the reservoir outflow hydrograph without the aid of recorded flow data. Flood attenuation was estimated through the analysis of the inflow and outflow hydrographs of the reservoir. An ungauged reservoir basin in southern Taiwan is presented as an example to show the applicability of the proposed analytical procedure. The analytical results provide valuable information for downstream flood control work for different return periods.  相似文献   

12.
Hysteresis loops to 1200 oersteds (9.55×104 A m?1) are measured between 295 K and 105 K for two deep-sea basalts (DSDP, Leg 34 and 37) containing large (~200 μm) unexsolved titanomagnetite grains. The Curie points, electron microprobe analyses and saturation magnetizations of the magnetic grains are the same as for unoxidized synthetic titanomagnetite (xFe2TiO4·(l ? x)Fe3O4) with x=0.6.As temperature is lowered from 295 to 190 K, coercive force Hc slowly rises from ~40 Oe to ~95 Oe approximately in proportion to the rise in the magnetostriction constant λ. Presumably, Hc is controlled by λ through internal stresses impeding domain wall motion. As expected of multidomain grains, the ratio of saturation remanence to saturation magnetization (in 1200 oersted cycles) jR/jS rises approximately in proportion to Hc, with a constant of proportionality consistent with titanomagnetite (x=0.6).As temperature is lowered from 190 to 120 K, Hc rises rapidly to ~400 Oe as a roughly linear function of the magnetocrystalline anisotropy constant K1. Perhaps Hc is now controlled by K1 through non-magnetic inclusions impeding domain wall motion.As temperature is lowered from 120 to 105 K, Hc rises even more rapidly to ~600 Oe. The control over Hc seems to have changed again, though most of the titanomagnetite is in grains large enough to still contain a few domains. The ratio jR/jS reaches 0.7 by 105 K and appears to be saturating towards the theoretical limit of 0.83.  相似文献   

13.
14.
In the present study, the stable isotopes δ18O and δ2H were used for assessment of the water balance in a heterogeneously structured catchment area in the Lusatian Lignite Mining District, in particular, for estimation of the annual groundwater inflow and outflow (IGW and OGW) of Mining Lake Plessa 117. The application of stable isotopes was possible since the water exchange in the catchment area had reached steady‐state conditions after the abandonment of mining activities in 1968 and the filling of the voids and aquifers by re‐rising groundwater in the years thereafter. Diverging slopes of the Evaporation Line and the Global Meteoric Water Line manifested as evaporation from the lake catchment area. The calculated isotope water balance was compared with the commonly used surface water balance, which is unable to differentiate between IGW and OGW, and with a local groundwater model. The groundwater model calculated an IGW of about 811 000 m3 yr?1 and an OGW close to zero, whereas the isotope water balance showed fluxes of about 914 000 and 140 000 m3 yr?1, respectively. Considering the contribution of the groundwater inflow to the total annual input into the lake (ΔIT) and the mean residence time (τ), where the groundwater model and the isotope water balance calculated 42 and 47% for ΔIT and 4·3 and 3·9 years for τ, respectively, it was shown that both water balance calculation methods led to comparable results despite the differences in IGW and OGW. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The discharge hydrograph estimation in rivers based on reverse routing modeling and using only water level data at two gauged sections is here extended to the most general case of significant lateral flow contribution, without needing to deploy rainfall–runoff procedures. The proposed methodology solves the Saint‐Venant equations in diffusive form also involving the lateral contribution using a “head‐driven” modeling approach where lateral inflow is assumed to be function of the water level at the tributary junction. The procedure allows to assess the discharge hydrograph at ends of a selected river reach with significant lateral inflow, starting from the stage recorded there and without needing rainfall data. Specifically, the MAST 1D hydraulic model is applied to solve the diffusive wave equation using the observed stage hydrograph at the upstream section as upstream boundary condition. The other required data are (a) the observed stage hydrograph at the downstream section, as benchmark for the parameter calibration, and (b) the bathymetry of the river reach, from the upstream section to a short distance after the downstream gauged section. The method is validated with different flood events observed in two river reaches with a significant intermediate basin, where reliable rating curves were available, selected along the Tiber River, in central Italy, and the Alzette River, in Luxembourg. Very good performance indices are found for the computed discharge hydrographs at both the channel ends and along the tributaries. The mean Nash‐Sutcliffe value (NSq) at the channel ends of two rivers is found equal to 0.99 and 0.86 for the upstream and downstream sites, respectively. The procedure is also validated on a longer stretch of the Tiber River including three tributaries for which appreciable results are obtained in terms of NSq for the computed discharge hydrographs at both the channel ends for three investigated flood events.  相似文献   

16.
ABSTRACT

When discharge measurements are not available, design of water structures relies on using frequency analysis of rainfall data and applying a rainfall–runoff model to estimate a hydrograph. The Soil Conservation Service (SCS) method estimates the design hydrograph first through a rainfall–runoff transformation and next by propagating runoff to the basin outlet via the SCS unit hydrograph (UH) method. The method uses two parameters, the Curve Number (CN) and the time of concentration (Tc). However, in data-scarce areas, the calibration of CN and Tc from nearby gauged watersheds is limited and subject to high uncertainties. Therefore, the inherent uncertainty/variability of the SCS parameters may have considerable ramifications on the safety of design. In this research, a reliability approach is used to evaluate the impact of incorporating the uncertainty of CN and Tc in flood design. The sensitivity of the probabilistic outcome against the uncertainty of input parameters is calculated using the First Order Reliability Method (FORM). The results of FORM are compared with the conventional SCS results, taking solely the uncertainty of the rainfall event. The relative importance of the uncertainty of the SCS parameters is also estimated. It is found that the conventional approach, used by many practitioners, might grossly underestimate the risk of failure of water structures, due to neglecting the probabilistic nature of the SCS parameters and especially the Curve Number. The most predominant factors against which the SCS-CN method is highly uncertain are when the average rainfall value is low (less than 20 mm) or its coefficient of variation is not significant (less than 0.5), i.e. when the resulting rainfall at the design return period is low. A case study is presented for Egypt using rainfall data and CN values driven from satellite information, to determine the regions of acceptance of the SCS-CN method.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Efstratiadis  相似文献   

17.
ABSTRACT

An attempt is made to explain the field measurements of piezometric height and discharge rate in a submerged drain system. The lateral inflow into the drain pipe is not necessarily uniformly distributed as is usually assumed. Hence, in analysing the hydrological performance of the drain pipe in the field, this fact must be considered. A general formula (equation (11)) is presented for calculating the actual distribution of the lateral inflow and a practical application is discussed.  相似文献   

18.
Abstract

The two-parameter EV1 distribution adequately describes New Zealand's flood series. Contour maps of [Qbar]/A0.8 and Q100[Qbar] are presented, where [Qbar] is the mean annual flood, A is the basin area and Q100 is the 1% annual exceedance probability flood. The maps are based directly on measured discharge series from a large sample of river recording stations. Thus when basins are ungauged, or have just a short record, an estimate of a design flood QT with specified annual exceedance probability (1/T) can be obtained using map estimates of [Qbar]/A0.8 and Q100[Qbar], without having first to estimate rainfall statistics for the basin, a particularly difficult task in sparsely instrumented mountainous areas. These maps succinctly summarize a great deal of hydrological information and permit improved flood frequency estimates.  相似文献   

19.
Abstract

The structure and collapse of linear three-dimensional magnetic neutral points is studied by varying the four parameters (p, q,j|,j ) that define, in general, the linear field of a neutral point. The effect of these parameters on both the skeleton structure (i.e. the fan and spine) and the actual field line structure of the null is considered. It is found that one current component (j ) causes the skeleton structure of the null to fold up from its potential state, whereas the other current component (j |;) causes the field lines to bend. The two other parameters (p,q) determine the potential structure of the null and cause the null to transform from a three-dimensional null to a two-dimensional null and from a positive (type B) null to a negative (type A) null.

To investigate the collapse of three-dimensional nulls, solutions to the linear, low-β ideal magnetohydrodynamic equations are found. It is found that three-dimensional null points can collapse if the field line foot-points are free and energy can propagate into the system.  相似文献   

20.
The diffusive wave equation with inhomogeneous terms representing hydraulics with uniform or concentrated lateral inflow into a river is theoretically investigated in the current paper. All the solutions have been systematically expressed in a unified form in terms of response function or so called K-function. The integration of K-function obtained by using Laplace transform becomes S-function, which is examined in detail to improve the understanding of flood routing characters. The backwater effects usually resulting in the discharge reductions and water surface elevations upstream due to both the downstream boundary and lateral inflow are analyzed. With a pulse discharge in upstream boundary inflow, downstream boundary outflow and lateral inflow respectively, hydrographs of a channel are routed by using the S-functions. Moreover, the comparisons of hydrographs in infinite, semi-infinite and finite channels are pursued to exhibit the different backwater effects due to a concentrated lateral inflow for various channel types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号