首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results.  相似文献   

2.
Synchronously and accurately estimating the flood discharges and dynamic changes in the fluid density is essential for hydraulic analysis and forecasting of flash floods, as well as for risk assessment. However, such information is rare for steep mountain catchments, especially in regions that are hotspots for earthquakes. Therefore, six hydrological monitoring sites were established in the main stream and tributaries of the 78.3‐km2 Longxi River catchment, an affected region of the Wenchuan earthquake region in China. Direct real‐time monitoring equipment was installed to measure the flow depths, velocities, and fluid total pressures of the flood hydrographs. On the basis of field measurements, real‐time mean cross‐sectional velocities during the flood hydrographs could be derived from easily obtainable parameters: cross‐sectional maximum velocities and the calibrated dimensionless parameter Kh . Real‐time discharges were determined on the basis of a noncontact method to establish the effective rating curves of this mountainous stream, ranging from 1.46 to 386.34 m3/s with the root mean square errors of ≤10.22 m3/s. Compared with the traditional point‐velocity method and empirical Manning's formula, the proposed noncontact method was reliable and safe for monitoring whole flood hydrographs. Additionally, the real‐time fluid density during the flood hydrographs was calculated on the basis of the direct monitoring parameters for fluid total pressures and water depths. During the flood hydrograph, transient flow behaviour with higher fluid density generally occurred downstream during the flood peak periods when the flow was in the supercritical flow regime. The observed behaviour greatly increased the threat of damage to infrastructure and human life near the river. Thus, it is important to accurately estimate flood discharge and identify for fluid densities so that people at risk from an impending flash flood are given reliable, advanced warning.  相似文献   

3.
Despite uncertainties and errors in measurement, observed peak discharges are the best estimate of the true peak discharge from a catchment. However, in ungauged catchments, the catchment response time is a fundamental input to all methods of estimating peak discharges; hence, errors in estimated catchment response time directly impact on estimated peak discharges. In South Africa, this is particularly the case in ungauged medium to large catchments where practitioners are limited to use empirical methods that were calibrated on small catchments not located in South Africa. The time to peak (TP), time of concentration (TC) and lag time (TL) are internationally the most frequently used catchment response time parameters and are normally estimated using either hydraulic or empirical methods. Almost 95% of all the time parameter estimation methods developed internationally are empirically based. This paper presents the derivation and verification of empirical TP equations in a pilot scale study using 74 catchments located in four climatologically different regions of South Africa, with catchment areas ranging from 20 km2 to 35 000 km2. The objective is to develop unique relationships between observed TP values and key climatological and geomorphological catchment predictor variables in order to estimate catchment TP values at ungauged catchments. The results show that the derived empirical TP equation(s) meet the requirement of consistency and ease of application. Independent verification tests confirmed the consistency, while the statistically significant independent predictor variables included in the regressions provide a good estimation of catchment response times and are also easy to determine by practitioners when required for future applications in ungauged catchments. It is recommended that the methodology used in this study should be expanded to other catchments to enable the development of a regional approach to improve estimation of time parameters on a national‐scale. However, such a national‐scale application would not only increase the confidence in using the suggested methodology and equation(s) in South Africa, but also highlights that a similar approach could be adopted internationally. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Diurnal variations in discharge and suspended sediment concentration (SSC), including runoff delaying characteristics, have been studied for the Gangotri Glacier, the largest glacier in the Garhwal Himalayas (glacierized area 286 km2; drainage area 556 km2). Hourly discharge and SSC data were collected near the snout of the glacier (∼4000 m) at an interval of about 15 days for an entire ablation period (May–October 2001). Diurnal variability in SSC was found to be much higher than the discharge. Hysteresis trends between discharge and SSC were established. Results indicate that, for the study glacier, clockwise hysteresis dominated for the entire melt season, indicating that most of the time the SSC led the discharge. During the peak melt period, anticlockwise hysteresis was also observed for a few hours. Assessment of runoff‐delaying characteristics was made by estimating the time lag between the occurrence of melting and its appearance as runoff along with estimation of time to peak. A comparison of runoff‐delaying parameters with discharge ratio clearly indicated that changes in time lag and time to peak are inversely correlated with variations in discharge. Attempts have also been made to establish the relationship between discharge and SSC using short‐interval data. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The standardized precipitation index (SPI) and standardized streamflow index (SSI) were used to analyse dry/wet conditions in the Logone catchment over a 50-year period (1951–2000). The SPI analysis at different time scales showed several meteorological drought events ranging from moderate to extreme; and SSI analysis showed that wetter conditions prevailed in the catchment from 1950 to 1970 interspersed with a few hydrological drought events. Overall, the results indicate that both the Sudano and Sahelian zones are equally prone to droughts and floods. However, the Sudano zone is more sensitive to drier conditions, while the Sahelian zone is sensitive to wetter conditions. Correlation analysis between SPI and SSI at multiple time scales revealed that the catchment has a low response to rainfall at short time scales, though this progressively changed as the time scale increased, with strong correlations (≥0.70) observed after 12 months. Analysis using individual monthly series showed that the response time reduced to 3 months in October.  相似文献   

6.
The sediment flux from a catchment is driven by tectonics and climate but is moderated by the geomorphic response of the landscape system to changes in these two boundary conditions. Consequently, catchment response time and the non‐linear behavior of landscapes in response to boundary condition change control the downstream propagation of climatic or tectonic perturbations from catchments to neighboring basins. In order to investigate the impact of catchment response time on sediment flux, we integrated a spatially‐lumped numerical model PaCMod, with new routines simulating the evolution of landscape morphology and erosion rates under tectonic and climatic forcing. We subsequently applied the model to reconstruct the sediment flux from a tectonically perturbed catchment in central Italy. Finally, we coupled our model to DeltaSim, a process‐response model simulating fluvio‐deltaic stratigraphy, and investigated the impact of catchment response time on stratigraphy, using both synthetic scenarios and a real world system (Fucino Basin, central Italy). Our results demonstrate that the differential response of geomorphic elements to tectonic and climatic changes induces a complex sediment flux signal, and produces characteristic stratigraphic architectures and shoreline trajectories. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号