首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

This work makes explicit an algebraic expression giving the matrix of transient influence coefficients associated with a one-dimensional semi-confined aquifer model. The domain studied is divided into a series of connected and completely mixed compartments over which the governing equation is discretized. The discrete equations obtained are solved for the compartmental hydraulic head and used to derive the algebraic expression in question. The basic properties of the so-called algebraic influence coefficients are investigated. In particular, their consistency with the exact Green function is highlighted. Finally, the newly derived influence coefficients are applied to a simplified aquifer system in order to formulate and solve the problem of identifying illegal groundwater pumping.  相似文献   

2.
《水文科学杂志》2013,58(2):409-420
Abstract

This work extends the algebraic expression of influence coefficients developed for one-dimensional aquifer models to a two-dimensional (2-D) case. First, the partial differential equation governing the flow in a 2-D semi-confined aquifer is discretized using a finite difference scheme. This results in a system of discrete equations presented in the form of water balance equations associated with a network of interconnected compartments centred on the grid nodes. The foregoing system is transformed into a series of uncoupled 1-D equations stated in terms of some generalized hydraulic head for which they are also solved. Second, the original hydraulic head is recovered from the generalized one via an appropriate linear transformation. Whence, the algebraic expression making the hydraulic head explicit versus sources and boundary conditions is derived. This discrete expression, mapped onto its continuous counterpart, helps to deduce an algebraic form of the inter-compartment influence coefficients. Finally, a comparison with the analytical Green function is carried out.  相似文献   

3.
《水文科学杂志》2013,58(4):868-882
Abstract

Non-Darcian flow in a finite fractured confined aquifer is studied. A stream bounds the aquifer at one side and an impervious stratum at the other. The aquifer consists of fractures capable of transmitting water rapidly, and porous blocks which mainly store water. Unsteady flow in the aquifer due to a sudden rise in the stream level is analysed by the double-porosity conceptual model. Governing equations for the flow in fractures and blocks are developed using the continuity equation. The fluid velocity in fractures is often too high for the linear Darcian flow so that the governing equation for fracture flow is modified by Forcheimer's equation, which incorporates a nonlinear term. Governing equations are coupled by an interaction term that controls the quasi-steady-state fracture—block interflow. Governing equations are solved numerically by the Crank-Nicolson implicit scheme. The numerical results are compared to the analytical results for the same problem which assumes Darcian flow in both fractures and blocks. Numerical and analytical solutions give the same results when the Reynolds number is less than 0.1. The effect of nonlinearity on the flow appears when the Reynolds number is greater than 0.1. The higher the rate of flow from the stream to the aquifer, the higher the degree of nonlinearity. The effect of aquifer parameters on the flow is also investigated. The proposed model and its numerical solution provide a useful application of nonlinear flow models to fractured aquifers. It is possible to extend the model to different types of aquifer, as well as boundary conditions at the stream side. Time-dependent flow rates in the analysis of recession hydrographs could also be evaluated by this model.  相似文献   

4.
Reply     
Abstract

This paper develops a new analytical solution for the aquifer system, which comprises an unconfined aquifer on the top, a semi-confined aquifer at the bottom and an aquitard between them. This new solution is derived from the Boussinesq equation for the unconfined aquifer and one-dimensional leaky confined flow equation for the lower aquifer using the perturbation method, considering the water table over-height at the remote boundary. The head fluctuation predicted from this solution is generally greater than the one solved from the linearized Boussinesq equation when the ratio of the tidal amplitude to the thickness of unconfined aquifer is large. It is found that both submarine groundwater discharges from upper and lower aquifers increase with tidal amplitude–aquifer thickness ratio and may be underestimated if the discharge is calculated based on the average head fluctuation. The effects of the aquifer parameters and linearization of the Boussinesq equation on the normalized head fluctuation are also investigated.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Chuang, M.-H., Mahdi, A.-A. and Yeh, H.-D., 2012. A perturbation solution for head fluctuations in a coastal leaky aquifer system considering water table over-height. Hydrological Sciences Journal, 57 (1), 162–172.  相似文献   

5.
ABSTRACT

This paper presents a model of the groundwater flow into a river from an aquifer beneath the river. The mathematical problem is to solve Laplace's equation with a free boundary and the solution procedure uses a variational inequality which leads to an approximate solution using finite differences. The method can be used to provide for example, inflow conditions in river modelling calculations.  相似文献   

6.
In the paper a solution of two-dimensional (2D) nonlinear diffusive wave equation in a partially dry and wet domain is considered. The splitting technique which allows to reduce 2D problem into the sequence of one-dimensional (1D) problems is applied. The obtained 1D equations with regard to x and y are spatially discretized using the modified finite element method with the linear shape functions. The applied modification referring to the procedure of spatial integration leads to a more general algorithm involving a weighting parameter. Time integration is carried out using a two-level difference scheme with the weighting parameter as well. The resulting tri-diagonal systems of nonlinear algebraic equations are solved using the Picard iterative method. For particular sets of the weighting parameters, the proposed method takes the form of a standard finite element method and various schemes of the finite difference method. On the other hand, for the linear version of the governing equation, the proper values of the weighting parameters ensure an approximation of 3rd order. Since the diffusive wave equation can be solved no matter whether the area is dry or wet, the numerical computations can be carried out over entire domain of solution without distinguishing a current position of the shoreline which is obtained as a result of solution.  相似文献   

7.
Abstract

The dependence of the recession of the ground water levels and the ground water discharge upon the initial state of the aquifer is examined for deep unconfined aquifers. It is shown that only in the early stages of the recession does the initial state exert a limited influence on the recession. An estimate of the upper limit of the time t 0 for which for t > t 0 the recession becomes effectively independent of the initial state of the aquifer, valid for physically realistic initial states can be gained from inequalities (11) and (12a) and equation (16). t 0 depends essentially on the parameters of the aquifer and it is estimated that for useful aquifers t 0 can not be expected to exceed one month in relatively adverse cases. This explains why empirical recessions often are found to be consistent, of an exponential form.  相似文献   

8.
The hydraulic head distribution in a wedge-shaped aquifer depends on the wedge angle and the topographic and hydrogeological boundary conditions. In addition, an equation in terms of the radial distance with trigonometric functions along the boundary may be suitable to describe the water level configuration for a valley flank with a gentle sloping and rolling topography. This paper develops a general mathematical model including the governing equation and a variety of boundary conditions for the groundwater flow within a wedge-shaped aquifer. Based on the model, a new closed-form solution for transient flow in the wedge-shaped aquifer is derived via the finite sine transform and Hankel transform. In addition, a numerical approach, including the roots search scheme, the Gaussian quadrature, and Shanks’ method, is proposed for efficiently evaluating the infinite series and the infinite integral presented in the solution. This solution may be used to describe the head distribution for wedges that image theory is inapplicable, and to explore the effects of the recharge from various topographic boundaries on the groundwater flow system within a wedge-shaped aquifer.  相似文献   

9.
Abstract

The impact of pollution incidents on rivers and streams may be predicted using mathematical models of solute transport. Practical applications require an analytical or numerical solution to a governing solute mass balance equation together with appropriate values of relevant transport coefficients under the flow conditions of interest. This paper considers two such models, namely those proposed by Fischer and by Singh and Beck, and compares their performances using tracer data from a small stream in Edinburgh, UK. In calibrating the models, information on the magnitudes and the flow rate dependencies of the velocity and the dispersion coefficients was generated. The dispersion coefficient in the stream ranged between 0.1 and 0.9 m2/s for a flow rate range of 13–437 L/s. During calibration it was found that the Singh and Beck model fitted the tracer data a little better than the Fischer model in the majority of cases. In a validation exercise, however, both models gave similarly good predictions of solute transport at three different flow rates.  相似文献   

10.
Abstract

The impulse response and the response to a unit step function of the onedirectional semi-infinite aquifer is given, derived from the approximate partial differential equation of the ground water flow. An example is presented.  相似文献   

11.
《水文科学杂志》2013,58(4):700-712
Abstract

The groundwater flow equation governing the elevation (h) of the steady-state phreatic surface in a sloping aquifer fed by constant recharge over a bi-circular sector is rhh′ ? r 2 Bh′ + Pr 2 ? PR 2 = 0, where r is the radial coordinate, P is a constant involving recharge and aquifer properties, and B is the slope of the aquifer—bedrock boundary. The derived flow equation describes radially convergent flow through a sloping aquifer that discharges to a water body of fixed head. One important simplification is that in which the width of the bi-circular sector is constant, and the draining land becomes a rectangular aquifer. The bi-circular sector and rectangular-strip groundwater flow problems are solved in terms of implicit equations. The solutions for the steady-state phreatic surfaces depend on the ratio of recharge to hydraulic conductivity, the slope of the aquifer-bedrock, and the downstream constant-head boundary. Computational examples illustrate the application of the solutions.  相似文献   

12.
Abstract

The multi-layered Jeffara de Gabes aquifer system is greatly influenced by tectonics. This system is limited at the base and laterally by evaporite layers and has lateral contacts with the sebkhas (salt flats). The groundwater in this aquifer is characterized by high salinity (3–10 g L-1). Multivariate statistical analysis and a geochemical approach were applied to determine the influence of the evaporite layers and sebkhas on the hydrochemical quality of the Jeffara de Gabes aquifer, and to understand the processes governing its salinity. According to these methods, and based in part on the Sr2+/Ca2+ ratio, it is demonstrated that the strong salinity of the groundwater is due to interactions between water and the evaporite layers that act as a substratum of this aquifer, as well as saltwater intrusion from the sebkhas. Moreover, the medium- to poor-quality groundwaters are characterized by geochemical interactions: cationic exchange and the precipitation/dissolution process of minerals in the aquifer formations.

Editeur Z.W. Kundzewicz

Citation Ben Alaya, M., Zemni, T., Mamou, A. et Zargouni, F., 2014. Acquisition de salinité et qualité des eaux d’une nappe profonde, Tunisie: approche statistique et géochimique. Hydrological Sciences Journal, 59 (2), 395–419.  相似文献   

13.
The objective of this paper is to present an analytical solution for describing the head distribution in an unconfined aquifer with a single pumping horizontal well parallel to a fully penetrating stream. The Laplace-domain solution is developed by applying Fourier sine, Fourier and Laplace transforms to the governing equation as well as the associated initial and boundary conditions. The time-domain solution is obtained after taking the inverse Laplace transform along with the Bromwich integral method and inverse Fourier and Fourier sine transforms. The upper boundary condition of the aquifer is represented by the free surface equation in which the second-order slope terms are neglected. Based on the solution and Darcy’s law, the equation representing the stream depletion rate is then derived. The solution can simulate head distributions in an aquifer infinitely extending in horizontal direction if the well is located far away from the stream. In addition, the solution can also simulate head distributions in confined aquifers if specific yield is set zero. It is shown that the solution can be applied practically to evaluate flow to a horizontal well.  相似文献   

14.
ABSTRACT

The one-dimensional transient downward entry of water in unsaturated soils is investigated theoretically. The mathematical equation describing the infiltration process is derived by combining Darcy's dynamic equation of motion with the continuity and thermodynamic state equations adjusted for the unsaturated flow conditions. The resulting equation together with the corresponding initial and boundary conditions constitues a mathematical initial boundary value problem requiring the solution of a nonlinear partial differential equation of the parabolic type. The volumetric water content is taken as the dependent variable and the time and the position along the vertical direction are taken as the independent variables. The governing equation is of such nature that a solution exists for t > 0 and is uniquely determined if two relationships are defined, together with the specified state of the system, at the initial time t = 0 and at the two boundaries. The two required relations are those of pressure versus permeability and pressure versus volumetric water content.

Since the partial differential equation has strong non-linear terms, a discrete solution is obtained by approximating the derivatives with finite-differences at discrete mesh points in the solution domain and integrated for the corresponding initial and boundary conditions. The use of an implicit difference scheme is employed in order to generate a system of simultaneous non-linear equations that has to be solved for each time increment. For n mesh points the two boundary conditions provide two equations and the repetition of the recurrence formula provides n—2 equations, the total being n equations for each time increment. The solution of the system is obtained by matrix inversion and particularly with a back-substitution technique. The FORTRAN statements used for obtaining the solution with an electronic digital computer (IBM 704) are presented together with the input data.

Analysis of the errors involved in the numerical solution is made and the stability and convergence of the solution of the approximate difference equation to that of the differential equation is investigated. The method applied is that of making a Fourier series expansion of a whole line of errors and then following the progress of the general term of the series expansion and also the behavior of each constituent harmonic. The errors (forming a continuous function of points in an abstract Banach space) are represented by vectors with the Fourier coefficients constituting a second Banach space. The amplification factor of the difference equation is shown to be always less than unity which guarantees the stability of the employed implicit recurrence scheme.

Experiments conducted on a vertical column packed uniformly with very fine sand, show a satisfactory agreement between the theoretically and experimentally obtained values. Many experimental results are shown in an attempt to explain the infiltration phenomenon with emphasis on the shape and movement of the wet front, and the effects of the degree of compaction, initial water content and deaired water on the infiltration rate.  相似文献   

15.
ABSTRACT

Forward–backward solute dispersion with an intermediate point source in one-dimensional semi-infinite homogeneous porous media is studied in this paper. Solute transport under sorption conditions, first-order decay and zero-order production terms are included. The first type of boundary condition is taken as a constant point source at an intermediate point from where forward and backward solute dispersion is examined. The Laplace transform method is adopted to solve the governing equation analytically. All the analytical results are obtained in graphical form to investigate the forward–backward solute transport in porous media for various hydrological input data. The graphical nature of the analytical solution is compared with numerical data taken from existing literature and similar results are obtained. Also, numerical solution of the governing equation is obtained by the Crank-Nicolson finite difference scheme and validated with the analytical solution, which demonstrates good agreement between them. Accuracy of the solution is also observed by using RMSE.  相似文献   

16.
This article investigates the quantity of submarine groundwater discharge (SGD) from a coastal multi‐layered aquifer system in response to constant rainfall infiltration. The system comprises an unconfined aquifer, a leaky confined aquifer and an aquitard between them and terminates at the coastline. An approximate analytical solution is derived based on the following assumptions: (i) flow is horizontal in the aquifers and vertical in the aquitard, and (ii) flow in the unconfined aquifer is described by nonlinear Boussinesq equation. The analytical solution is compared with numerical solutions of the strictly two‐dimensional nonlinear model to validate the model assumptions used for the analytical solution. The SGD from the leaky confined aquifer increases with the inland rainfall infiltration recharge and the specific leakage of aquitard. The maximum SGD ranges from 1·87 to 10·37 m3 per day per meter of shoreline when rainfall infiltration ranges from 18·2 to 182 mm/year and the specific leakage of aquitard varies from 10?9 to 10?1 l/day. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

Submarine springs play an important role in submarine groundwater discharge (SGD). To investigate the effects of these springs on the propagation of tidal signals in coastal confined aquifers, this paper considers a general coastal aquifer system with a submarine spring on the seabed where the length of the aquifer's offshore extent is finite and its submarine outlet is covered by an impermeable outlet-capping. An approximate analytical solution is obtained for describing the tidal head fluctuations in the aquifer. Solution analyses indicate that the error of the approximate analytical solution is negligible when both distances from the spring hole to the coastline and to the submarine outlet-capping are much greater than the radius of the spring hole. Sensitivity tests are conducted to investigate the effects of hydraulic properties, tidal and spring geometric configuration parameters on the tidal signal propagation in the inland aquifer. For aquifers with infinite offshore length, or without submarine springs, existing solutions in the literature are obtained. The comparison of groundwater head fluctuations for the cases with and without a submarine spring demonstrate the enhancing effect of the submarine spring on tidal signal propagation in the inland aquifer. Three situations that fit our model assumptions are given for future potential applications. A hypothetical example is used to show the possibility of identifying a spring's location using the present analytical solution together with tidal signals observed from inland wells.

Editor D. Koutsoyiannis; Associate editor Y. Guttmann

Citation Xia, Y.Q., Li, H.L., Yang, Y., and Huang, W., 2012. Enhancing effect on tidal signals of a submarine spring related to a semi-infinite confined aquifer. Hydrological Sciences Journal, 57 (6), 1231–1248.  相似文献   

18.
Jiann‐Mou Chen 《水文研究》2008,22(26):5037-5047
Most methods developed to represent water flow phenomena in an unconfined aquifer with a fully penetrated pumping well are either numerical, such as the well‐known FEMWTER model, or experimental; analytical models of a partially penetrated pumping well are rare. This study employs the linearized Richards equation as the governing equation, with the aid of Fourier Integral Transformation, to obtain an analytical solution of the water content distribution in an unconfined aquifer with a partially penetrated pumping well. The results from this study could serve to substantiate in some sense results from numerical models. In addition, the theory developed herein can be modified to simulate a vacuum‐pressured pumping well since it is derived by considering, among others, the location and length of a well screen with fluxes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we present a conceptual‐numerical model that can be deduced from a calibrated finite difference groundwater‐flow model, which provides a parsimonious approach to simulate and analyze hydraulic heads and surface water body–aquifer interaction for linear aquifers (linear response of head to stresses). The solution of linear groundwater‐flow problems using eigenvalue techniques can be formulated with a simple explicit state equation whose structure shows that the surface water body–aquifer interaction phenomenon can be approached as the drainage of a number of independent linear reservoirs. The hydraulic head field could be also approached by the summation of the head fields, estimated for those reservoirs, defined over the same domain set by the aquifer limits, where the hydraulic head field in each reservoir is proportional to a specific surface (an eigenfunction of an eigenproblem, or an eigenvector in discrete cases). All the parameters and initial conditions of each linear reservoir can be mathematically defined in a univocal way from the calibrated finite difference model, preserving its characteristics (geometry, boundary conditions, hydrodynamic parameters (heterogeneity), and spatial distribution of the stresses). We also demonstrated that, in practical cases, an accurate solution can be obtained with a reduced number of linear reservoirs. The reduced computational cost of these solutions can help to integrate the groundwater component within conjunctive use management models. Conceptual approximation also facilitates understanding of the physical phenomenon and analysis of the factors that influence it. A simple synthetic aquifer has been employed to show how the conceptual model can be built for different spatial discretizations, the parameters required, and their influence on the simulation of hydraulic head fields and stream–aquifer flow exchange variables. A real‐world case was also solved to test the accuracy of the proposed approaches, by comparing its solution with that obtained using finite‐difference MODFLOW code. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The aim of the present paper is to present some mathematical techniques for the solution of problems connected with three-dimensional steady-state groundwater flow with a free surface. The validity of Darcy's law is assumed. As no use is made of the Dupuit-Forschheimer approximation, the shape of the free surface and the velocity potential must be determined simultaneously from a non-linear boundary value problem. In order to demonstrate the use of a variational method and of error distribution principles for the solution of those problems by an example as simple as possible, we investigate the gravity flow of incompressible, homogeneous groundwater towards a circular well completely penetrating an isotropic, homogeneous, inelastic aquifer resting on a horizontal, impermeable substratum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号