首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The discharge variability of the main rivers that drain the Guyana Shield is analysed over the last 50 years using cross-wavelet, coherence and composite analysis involving oceanic and atmospheric variables. We highlight the overall hydro-climatological homogeneity of this region that allowed us to focus on the longest discharge time series available. Therefore, a wavelet cross-analysis was carried out between monthly and seasonal Maroni River discharge at the Langa Tabiki station and selected climate indices. This confirms a strong relationship between the hydrology of the Guyana Shield and the Pacific sea-surface temperature (SST) fluctuations. There is evidence of intermittent influence, of between inter-annual and near decadal scales, of the Atlantic SST fluctuations, in particular around 1970 and 1990. Finally, we show that the links between oceanic regions and high discharge in the rivers of Guyana are realized through the reinforcement of the Walker and Hadley cells between the Amazon and the adjacent oceans and through decreased trade winds and monsoon flux that favour the persistence of humidity over the Guyana Shield.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Labat, D., Espinoza, J.-C., Ronchail, J., Cochonneau, G., de Oliveira, E., Doudou, J.C. and Guyot, J.-L., 2012. Fluctuations in the monthly discharge of Guyana Shield rivers, related to Pacific and Atlantic climate variability. Hydrological Sciences Journal, 57 (6), 1081–1091.  相似文献   

2.
Abstract

Access to hydrometric information underpins many areas of effective water management. This paper explores the operational practices of one national hydrological information service, the UK National River Flow Archive, in collating, managing and providing access to river flow data. An information lifecycle approach to hydrometric data management is advocated, with the paper detailing current UK procedures in the areas of: monitoring network design and development; data sensing and recording; validation and archival; synthesis and analysis; and data dissemination. The methods and policies outlined herein are widely transferable to other hydrological data archives around the world.

Editor D. Koutsoyiannis

Citation Dixon, H., Hannaford, J., and Fry, M.J., 2013. The effective management of national hydrometric data: experiences from the United Kingdom. Hydrological Sciences Journal, 58 (7), 1383–1399.  相似文献   

3.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

4.
Abstract

A one-dimensional water quantity and quality mathematical model was developed to evaluate the effects of joint gate–pump operation in terms of water withdrawal for pollutant flushing. The study was carried out in dry seasons in the Foshan River channel, China. The results indicate that the input of freshwater into the upper and middle reaches of the Foshan River can improve the water quality of the lower reaches. However, the backwater effect due to water diversion in the middle reaches of the river can greatly offset the cleaning processes in the upper reaches of the Foshan River. The results indicate that water quality in the upper Foshan River (Jiebian) may degrade with an increase in the rate of water withdrawal from the middle river when the discharge pumped from the upper Foshan River is less than 10m3/s; optimal water quality improvement is obtained with discharge values of 30 and 20 m3/s, respectively, at the upper and middle reaches of the Foshan River.

Editor D. Koutsoyiannis

Citation Liu, C.-L., Jiang, T., Zhang, Q., Zhu, S. and Li, K., 2012. Modelling of water withdrawal for pollutant flushing in the tidal river network, Pearl River Delta, China. Hydrological Sciences Journal, 57 (3), 576–590.  相似文献   

5.
Abstract

Rivers have been channelized, deepened and constrained by embankments for centuries to increase agricultural productivity and improve flood defences. This has decreased the hydrological connectivity between rivers and their floodplains. We quantified the hydrological regime of a wet grassland meadow prior to and after the removal of river embankments. River and groundwater chemistry were also monitored to examine hydrological controls on floodplain nutrient status. Prior to restoration, the highest river flows (~2 m3 s?1) were retained by the embankments. Under these flow conditions the usual hydraulic gradient from the floodplain to the river was reversed so that subsurface flows were directed towards the floodplain. Groundwater was depleted in dissolved oxygen (mean: 0.6 mg O2 L?1) and nitrate (mean: 0.5 mg NO3 ?-N L?1) relative to river water (mean: 10.8 mg O2 L?1 and 6.2 mg NO3 ?-N L?1, respectively). Removal of the embankments has reduced the channel capacity by an average of 60%. This has facilitated over-bank flow which is likely to favour conditions for improved flood storage and removal of river nutrients by floodplain sediments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Clilverd, H.M., Thompson, J.R., Heppell, C.M., Sayer, C.D., and Axmacher, J.C., 2013. River–floodplain hydrology of an embanked lowland Chalk river and initial response to embankment removal. Hydrological Sciences Journal, 58 (3), 627–650.  相似文献   

6.
Abstract

Around 9000 inhabitants in the Panda River basin, Sonbhadhra District, Uttar Pradesh, India, are vulnerable to a “silent” dental and skeletal fluorosis from groundwater consumption. The fluoride source and seasonal groundwater quality variation were studied by collecting 65 groundwater samples in the Upper Panda River basin. Major rock types are phyllites and granite gneissic rocks. Fluoride concentrations are in the range 0.4–5.6 mg/L in the pre-monsoon season and 0.1–6.7 mg/L in the post-monsoon season. Fluor-apatite and biotite mica in the granite gneissic rock were identified as the main provenance of fluoride in the groundwater through water–rock interactions. Due to precipitation of calcium, soils become alkaline with high contents of sodium; these conditions allow fluoride to accumulate in water. According to risk index calculations, the fluoride-affected villages were shown to fall in the fluoride risk zone (with a risk index of around 1.7). On the basis of mineral stability diagrams, groundwater from the weathered and fractured aquifers appears to be stable within the kaolinite field, suggesting weathering of silicate minerals. The groundwater is chemically potable and suitable for domestic and agricultural purposes, except for a few wells in the southern region that are contaminated with high amounts of fluoride.

Editor D. Koutsoyiannis

Citation Raju, N.J., Dey, S., Gossel, W., and Wycisk, P., 2012. Fluoride hazard and assessment of groundwater quality in the semi-arid Upper Panda River basin, Sonbhadra District, Uttar Pradesh, India. Hydrological Sciences Journal, 57 (7), 1433–1452.  相似文献   

7.
Abstract

This paper presents a viable approach for flood management strategy in a river basin based on the European Floods Directive. A reliable flood management plan has two components: (a) a proper flood management strategy, and (b) the determination of the flood-hazard areas. A method to evaluate the benefits of a flood warning system is presented herein, as well as a method to estimate the flood-hazard areas. Six factors were considered in order to estimate the spatial distribution of the hazardous areas: flow accumulation, slope, land use, rainfall intensity, geology and elevation. The study area was divided into five regions characterized by different degrees of flood hazard ranging from very low to very high. The produced map of flood-hazard areas identifies the areas and settlements at high risk of flooding. The proposed methodology can be applied to any river basin and here was applied to the Koiliaris River basin in Greece.

Citation Kourgialas, N. N. & Karatzas, G. P. (2011) Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol. Sci. J. 56(2), 212–225.  相似文献   

8.
Abstract

A wavelet-neural network (WNN) hybrid modelling approach for monthly river flow estimation and prediction is developed. This approach integrates discrete wavelet multi-resolution decomposition and a back-propagation (BP) feed-forward multilayer perceptron (FFML) artificial neural network (ANN). The Levenberg-Marquardt (LM) algorithm and the Bayesian regularization (BR) algorithm were employed to perform the network modelling. Monthly flow data from three gauges in the Weihe River in China were used for network training and testing for 48-month-ahead prediction. The comparison of results of the WNN hybrid model with those of the single ANN model show that the former is able to significantly increase the prediction accuracy.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Wei, S., Yang, H., Song, J.X., Abbaspour, K., and Xu, Z.X., 2013. A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrological Sciences Journal, 58 (2), 374–389.  相似文献   

9.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

10.
Abstract

Discharge in the Warta River in Poland has been analysed based on long series of measurements at the Gorzów Wielkopolski gauge station (covering the whole catchment area) and at Poznań (middle and upper catchment area), and the Note? River is characterized by the gauge station at Nowe Drezdenko. The annual mean discharge of the Warta River for the period 1981–2010 was equal to the average value for the last 163 years (209 m3 s-1), and there was no significant change in comparison with the ratio of runoff in the summer and winter half-years. In the driest region of Poland, the climate has been described on the basis of precipitation and air temperature. The annual mean precipitation for 1981–2010 (544 mm) in the Warta River catchment area was the same as that for the period 1848–2010. The precipitation has been increasing in spring and winter, and decreasing in summer. There is a positive and very significant correlation (r = 0.705) between the annual discharge and annual precipitation totals. The annual mean air temperature has risen by 0.6°C between the periods 1848–1980 and 1981–2010.
Editor D. Koutsoyiannis

Citation Ilnicki, P., Farat, R., Górecki, K., and Lewandowski, P., 2014. Impact of climatic change on river discharge in the driest region of Poland. Hydrological Sciences Journal, 59 (6), 1117–1134. http://dx.doi.org/10.1080/02626667.2013.831979  相似文献   

11.
Abstract

This study was carried out from 2003 to 2007 to understand the hydrogeochemical processes and the solute sources of the meltwaters of the Chhota Shigri Glacier, Himalaya. The meltwater is almost neutral to slightly alkaline in nature: bicarbonate and sulphate are the dominant anions, while calcium and magnesium are the dominant cations. Bicarbonate is found to be derived from carbonate weathering and partly from silicate weathering. Rock weathering followed by precipitation are the main controlling factors that influence the meltwater chemistry of this region. The relatively high values of pCO2 reflect a higher rate of solubility in comparison to release of excess CO2 gas to the atmosphere. The presence of active hydrogeochemical processes and sediment–water interaction results in excess solute transport through the meltwater to the Chandra River that feeds the Chenab, one of the great Himalayan river systems, and ultimately flows into the ocean. This study is the first of its kind to understand in detail the hydrogeochemical process and resultant solute load transport in this Himalayan glacier.

Citation Sharma, P., Ramanathan, A.L., and Pottakkal, J., 2013. Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrological Sciences Journal, 58 (5), 1128–1143.

Editor Z.W. Kundzewicz  相似文献   

12.
Abstract

The Okavango River system flows through Angola, Namibia and Botswana. It is in near-natural condition and supports globally iconic wetlands and wildlife. The basin’s people are poor and development is inevitable: the next decade is critical. The river could become an example of responsible planning that resolutely addresses the three pillars of sustainable development. Recognizing this, the Member States completed a transboundary diagnostic analysis (TDA) in 2010 funded by the three governments and the Global Environment Facility. A central feature of the TDA was a basin-wide environmental flow assessment using the DRIFT (Downstream Response to Imposed Flow Transformation) holistic approach. This produced scenarios of increasing water resource use that spelled out the costs and benefits in terms of the health of the river ecosystem, associated social structures and local and national economies. The results were used to help create a transboundary strategic action programme, which the Member States are now beginning to act on. This article describes the DRIFT application, the findings and how these could be used to help achieve sustainable development.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation King, J., Beuster, H., Brown, C., and Joubert, A., 2014. Pro-active management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Hydrological Sciences Journal, 59 (3–4), 786–800.  相似文献   

13.
Abstract

Water resources management should cover both blue water and green water. For green-water management at the river drainage basin scale, the green-water coefficient (C gw) is adopted, defined as the ratio of annual green water to annual precipitation. Based on data from the Middle Yellow River basin, China, for the period 1950 to 2007, we studied the temporal variation in C gw in response to some influencing factors. A decreasing trend in C gw was found. The influence of changes in land management on C gw, reflected by an increase in the area (A sw) of soil and water conservation measures, is emphasized. Using multiple regression analysis, the contributions of A sw and the 5-year moving averages of annual precipitation and air temperature were estimated as 51, 37 and 12%, respectively. The results may provide useful information for better management of water resources, including green and blue water flows in the Yellow River basin.

Editor Z.W. Kundzewicz; Associate editor D. Gerten

Citation Xu, J.-X., 2013. Effects of climate and land-use change on green-water variations in the Middle Yellow River, China. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

14.
Abstract

Suspended sediment and bedload discharges in sand-bed rivers shape semi-arid landscapes and impact sediment delivery from these landscapes, but are still incompletely understood. Suspended sediment and bedload fluxes of the intermittent Exu River, Brazil, were sampled by direct measurements. The highest suspended sediment concentration observed was 4847.4 mg L-1 and this value was possibly associated with the entrainment of sediment that was deposited in the preceding year. The bedload flux was well related to the stream power and the river efficiently transported all available bedload with a mean rate of 0.0047 kg m-1 s-1, and the percentage of bedload to suspended sediment varied between 4 and 12.72. The bed sediment of Exu River was prone to entrainment and showed a proclivity for transport. Thus, sand-bed and gravel-bed rivers of arid environments seem to exhibit the same mobility in the absence of armour layer.

Editor D. Koutsoyiannis; Associate editor B. Touaibia

Citation Cantalice, J.R.B., Cunha Filho, M., Stosic, B.D., Piscoya, V.C., Guerra, S.M.S., and Singh, V.P., 2013. Relationship between bedload and suspended sediment in the sand-bed Exu River, in the semi-arid region of Brazil. Hydrological Sciences Journal, 58 (8), 1789–1802.  相似文献   

15.
Abstract

Precipitation and streamwater were analysed weekly for δ18O in seven tributaries and five main stem sites of a 2100 km2 catchment; >60% of it is upland in character. Precipitation δ18O followed seasonal patterns ranging from –20‰ in winter to –4‰ in summer. Seasonality was also evident in stream waters, though much more damped. Mean transit times (MTTs) were estimated using δ18O input–output relationships in a convolution integral with a gamma distribution. The MTTs were relatively similar (528–830 days): tributaries exhibited a greater range, being shorter in catchments with montane topography and hydrologically responsive soils, and longer where catchments have significant water storage. Along the main stem, MTTs increased modestly from 621 to 741 days. This indicates that montane headwaters are the dominant sources of runoff along the main stem of the river system. Models suggest that around 10% of runoff has transit times of less than two weeks during higher flows whilst older (>10-year old) water sustains low flows contributing around 5% of runoff.

Citation Speed, M., Tetzlaff, D., Hrachowitz, M. & Soulsby, C. (2011) Evolution of the spatial and temporal characteristics of the isotope hydrology of a montane river basin. Hydrol. Sci. J. 56(3), 426–442  相似文献   

16.
Abstract

This paper presents the results of a survey carried out in 2010 aimed at evaluating the type and quality of the groundwater resources of the Bangui region of the Central African Republic. This work is the first step towards the development of groundwater resources in the Central African Republic in order to find alternatives to direct pumping from the Ubangi River and provide the population of the suburbs with a safer drinking water supply from deep boreholes. By combining both geological and hydrogeochemical approaches, it appears that the geology of Bangui is favourable to the development of a secure and sustainable water supply from groundwater provided that the conditions of exploitation would be constrained by the local authorities. The deep Precambrian carbonate aquifers, known as the Bimbo and Fatima formations, are identified as target resources in view of the relatively good quality of their water from the chemical point of view, and the semi-confined structure of the aquifers that prevents the mixing with shallow aquifers that are already strongly affected by domestic and industrial pollution. The main difficulty in terms of exploitation is to appreciate the depth of the resource and the more or less fractured/palaeo-karstified type of the porosity.

Editor Z.W. Kundzewicz

Citation Djebebe-Ndjiguim, C.L., Huneau, F., Denis, A., Foto, E., Moloto-a-Kenguemba, G., Celle-Jeanton, H., Garel, E., Jaunat, J., Mabingui, J., and Le Coustumer, P., 2013. Characterization of the aquifers of the Bangui urban area, Central African Republic, as an alternative drinking water supply resource. Hydrological Sciences Journal, 58 (8), 1760–1778.  相似文献   

17.
Abstract

The magnitudes of the largest known floods of the River Rhine in Basel since 1268 were assessed using a hydraulic model drawing on a set of pre-instrumental evidence and daily hydrological measurements from 1808. The pre-instrumental evidence, consisting of flood marks and documentary data describing extreme events with the customary reference to specific landmarks, was “calibrated” by comparing it with the instrumental series for the overlapping period between the two categories of evidence (1808–1900). Summer (JJA) floods were particularly frequent in the century between 1651–1750, when precipitation was also high. Severe winter (DJF) floods have not occurred since the late 19th century despite a significant increase in winter precipitation. Six catastrophic events involving a runoff greater than 6000 m 3 s‐1 are documented prior to 1700. They were initiated by spells of torrential rainfall of up to 72 h (1480 event) and preceded by long periods of substantial precipitation that saturated the soils, and/or by abundant snowmelt. All except two (1999 and 2007) of the 43 identified severe events (SEs: defined as having runoff > 5000 and < 6000 m 3 s ‐1) occurred prior to 1877. Not a single SE is documented from 1877 to 1998. The intermediate 121-year-long “flood disaster gap” is unique over the period since 1268. The effect of river regulations (1714 for the River Kander; 1877 for the River Aare) and the building of reservoirs in the 20th century upon peak runoff were investigated using a one-dimensional hydraulic flood-routing model. Results show that anthropogenic effects only partially account for the “flood disaster gap” suggesting that variations in climate should also be taken into account in explaining these features.

Citation Wetter, O., Pfister, C., Weingartner, R., Luterbacher, J., Reist, T., & Trösch, J. (2011) The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol. Sci. J. 56(5), 733–758.  相似文献   

18.
Abstract

Characteristics of hydroclimatic change in the upper reaches of the Minjiang River are analysed using data collected over the past 50 years. The effect of autocorrelation of time series on trend analysis is removed by adopting a pre-whitening technique. Long-term hydrometeorological trend and abrupt changes are analysed by the Mann-Kendall test. The results were validated by the linear trend and Spearman methods. Correlations between runoff change with air temperature and with precipitation were studied with the Pearson method. The results clearly show that average air temperature in the upper reaches of the river is increasing, and precipitation decreasing, with differences in spatio-temporal distribution. Runoff change has a clear positive correlation with precipitation. Meteorological change, especially in precipitation, is the key governing influence of runoff volume. The annual runoff decrease, especially the decrease of inflow in spring and autumn and earlier appearance and longer duration of the low-flow season, will impact greatly on irrigation and municipal water supply. Therefore, relevant measures and further study are necessary.

Editor Z.W. Kundzewicz; Associate editor Q. Zhang

Citation Huang, X.R., Zhao, J.W., Li, W.H., and Jiang, H.X., 2013. Impact of climatic change on streamflow in the upper reaches of the Minjiang River, China. Hydrological Sciences Journal, 59 (1), 154–164.  相似文献   

19.
Abstract

Quantifying the impacts of climate change on the hydrology and ecosystem is important in the study of the Loess Plateau, China, which is well known for its high erosion rates and ecosystem sensitivity to global change. A distributed ecohydrological model was developed and applied in the Jinghe River basin of the Loess Plateau. This model couples the vegetation model, BIOME BioGeochemicalCycles (BIOME-BGC) and the distributed hydrological model, Water and Energy transfer Process in Large river basins (WEP-L). The WEP-L model provided hydro-meteorological data to BIOME-BGC, and the vegetation parameters of WEP-L were updated at a daily time step by BIOME-BGC. The model validation results show good agreement with field observation data and literature values of leaf area index (LAI), net primary productivity (NPP) and river discharge. Average climate projections of 23 global climate models (GCMs), based on three emissions scenarios, were used in simulations to assess future ecohydrological responses in the Jinghe River basin. The results show that global warming impacts would decrease annual discharge and flood season discharge, increase annual NPP and decrease annual net ecosystem productivity (NEP). Increasing evapotranspiration (ET) due to air temperature increase, as well as increases in precipitation and LAI, are the main reasons for the decreasing discharge. The increase in annual NPP is caused by a greater increase in gross primary productivity (GPP) than in plant respiration, whilst the decrease in NEP is caused by a larger increase in heterotrophic respiration than in NPP. Both the air temperature increase and the precipitation increase may affect the changes in NPP and NEP. These results present a serious challenge for water and land management in the basin, where mitigation/adaption measures for climate change are desired.

Editor Z.W. Kundzewicz; Associate editor D. Yang

Citation Peng, H., Jia, Y.W., Qiu, Y.Q., and Niu, C.W., 2013. Assessing climate change impacts on the ecohydrology of the Jinghe River basin in the Loess Plateau, China. Hydrological Sciences Journal, 58 (3), 651–670.  相似文献   

20.
Abstract

The effects of land use on river water chemistry in a typical karst watershed (Wujiang River) of southwest China have been evaluated. Dissolved major ions and Sr isotopic compositions were determined in 11 independent sub-watersheds of the Wujiang River to investigate the spatio-temporal variations in river water chemistry and their relationship to land use. The results show significant spatial variability in pH, major ions, total dissolved solids (TDS), and Sr isotopic compositions throughout the basin. Correlation analysis indicates that nitrogen content is significantly related to forest coverage. Nitrogen and potassium generally have higher values in the rainy season, and the percentage of agricultural land controlled NO3- levels, which originate from anthropogenic sources. Forest cover, which varies between 35% and 71%, has no statistically significant impact on river solute concentrations, but the TDS flux is low in sub-watersheds with greater forest cover. Geological sources have a significant influence on pH and Sr isotopic compositions in river water throughout the basin.
Editor D. Koutsoyiannis

Citation Han, G., Li, F., and Tan, Q., 2014. Effects of land use on water chemistry in a river draining karst terrain, southwest China. Hydrological Sciences Journal, 59 (5), 1063–1073.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号