首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
A comprehensive evaluation of trends in annual instantaneous maximum flows (AIMF) from 153 gauge stations located in 26 river basins in Turkey is presented. Two traditional non-parametric trend tests, the Mann-Kendall (MK) and Spearman’s rho (SR), are used to quantify the significance of trends, while Sen’s slope method is applied to determine the magnitude of trends. The traditional tests indicate that the AIMF records of 57 stations showed statistically decreasing trends, while those of six stations showed an increasing trend. Sen’s trend method, which provides more detailed assessment of the trends in different clusters (low, medium and high), was applied to the AIMF series and the results were compared with traditional tests. Sen’s trend method indicated that all flow clusters at nine stations have increasing or decreasing trends, although no significant trend was detected by the MK and SR tests.  相似文献   

2.
An essential part of hydrological research focuses on hydrological extremes, such as river peak flows and associated floods, because of their large impact on economy, environment, and human life. These extremes can be affected by potential future environmental change, including global climate change and land cover change. In this paper, the relative impact of both climate change and urban expansion on the peak flows and flood extent is investigated for a small‐scale suburban catchment in Belgium. A rainfall‐runoff model was coupled to a hydrodynamic model in order to simulate the present‐day and future river streamflow. The coupled model was calibrated based on a series of measured water depths and, after model validation, fed with different climate change and urban expansion scenarios in order to evaluate the relative impact of both driving factors on the peak flows and flood extent. The three climate change scenarios that were used (dry, wet winter, wet summer) were based on a statistical downscaling of 58 different RCM and GCM scenario runs. The urban expansion scenarios were based on three different urban growth rates (low, medium, high urban expansion) that were set up by means of an extrapolation of the observed trend of urban expansion. The results suggest that possible future climate change is the main source of uncertainty affecting changes in peak flow and flood extent. The urban expansion scenarios show a more consistent trend. The potential damage related to a flood is, however, mainly influenced by land cover changes that occur in the floodplain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The paper presents an analysis of 17 long annual maximum series (AMS) of flood flows for Swiss Alpine basins, aimed at checking the presence of changes in the frequency regime of annual maxima. We apply Pettitt's change point test, the nonparametric sign test and Sen's test on trends. We also apply a parametric goodness‐of‐fit test for assessing the suitability of distributions estimated on the basis of annual maxima collected up to a certain year for describing the frequency regime of later observations. For a number of series the tests yield consistent indications for significant changes in the frequency regime of annual maxima and increasing trends in the intensity of annual maximum discharges. In most cases, these changes cannot be explained by anthropogenic causes only (e.g. streamflow regulation, construction of dams). Instead, we observe a statistically significant relationship between the year of change and the elevation of the catchment outlet. This evidence is consistent with the findings of recent studies that explain increasing discharges in alpine catchments with an increase in the temperature controlling the portion of mountain catchments above the freezing point. Finally, we analyse the differences in return periods (RPs) estimated for a given flood flow on the basis of recent and past observations. For a large number of the study AMS, we observe that, on average, the 100‐year flood for past observations corresponds to a RP of approximately 10 to 30 years on the basis of more recent observation. From a complementary perspective, we also notice that estimated RP‐year flood (i.e. flood quantile (FQ) associated with RP) increases on average by approximately 20% for the study area, irrespectively of the RP. Practical implications of the observed changes are illustrated and discussed in the paper. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

This paper introduces a reference hydrometric network for Ireland and examines the derived flow archive for evidence of climate-driven trends in mean and high river flows. The Mann-Kendall and Theil-Sen tests are applied to eight hydroclimatic indicators for fixed and variable (start and end date) records. Spatial coherence and similarities of trends with rainfall suggest they are climate driven; however, large temporal variability makes it difficult to discern widely-expected anthropogenic climate change signals at this point in time. Trends in summer mean flows and recent winter means are at odds with those expected for anthropogenic climate change. High-flow indicators show strong and persistent positive trends, are less affected by variability and may provide earlier climate change signals than mean flows. The results highlight the caution required in using fixed periods of record for trend analysis, recognizing the trade-off between record length, network density and geographic coverage.

Editor Z.W. Kundzewicz; Associate editor H. Lins

Citation Murphy, C., Harrigan, S., Hall, J., and Wilby, R.L., 2013. Climate-driven trends in mean and high flows from a network of reference stations in Ireland. Hydrological Sciences Journal, 58 (4), 755–772.  相似文献   

5.
An integrated field and modelling study was carried out on the 35‐ha La Reina catchment, Chile, to test the hypothesis that the effect of forest cover on flood peaks becomes less important as the size of the hydrological event increases. Meteorological and discharge data were measured at the catchment before and after the pine plantation that covered 80% of the catchment area was logged. Analysis of the measured response of the catchment provides support for the hypothesis but is not conclusive. Therefore, modelling of the catchment using 1000 years of generated rainfall data representative of the current conditions was carried out for the forested and logged states. The simulations show that the absolute difference in discharge between the two cases remains approximately constant as the discharge increases: thus as a percentage of discharge it decreases. This relative convergence appears to become significant at return periods of greater than approximately 10 years. Tests with different hypothetical soil depths for the forested and logged catchments show an absolute convergence in discharge between the two cases for shallow soils and no convergence for deep soils. Sediment transport simulations show that forest cover provides a clear benefit in protecting the soil from erosion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Parametric method of flood frequency analysis (FFA) involves fitting of a probability distribution to the observed flood data at the site of interest. When record length at a given site is relatively longer and flood data exhibits skewness, a distribution having more than three parameters is often used in FFA such as log‐Pearson type 3 distribution. This paper examines the suitability of a five‐parameter Wakeby distribution for the annual maximum flood data in eastern Australia. We adopt a Monte Carlo simulation technique to select an appropriate plotting position formula and to derive a probability plot correlation coefficient (PPCC) test statistic for Wakeby distribution. The Weibull plotting position formula has been found to be the most appropriate for the Wakeby distribution. Regression equations for the PPCC tests statistics associated with the Wakeby distribution for different levels of significance have been derived. Furthermore, a power study to estimate the rejection rate associated with the derived PPCC test statistics has been undertaken. Finally, an application using annual maximum flood series data from 91 catchments in eastern Australia has been presented. Results show that the developed regression equations can be used with a high degree of confidence to test whether the Wakeby distribution fits the annual maximum flood series data at a given station. The methodology developed in this paper can be adapted to other probability distributions and to other study areas. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Two probability density functions (pdf), popular in hydrological analyses, namely the log-Gumbel (LG) and log-logistic (LL), are discussed with respect to (a) their applicability to hydrological data and (b) the drawbacks resulting from their mathematical properties. This paper—the first in a two-part series—examines a classical problem in which the considered pdf is assumed to be the true distribution. The most significant drawback is the existence of the statistical moments of LG and LL for a very limited range of parameters. For these parameters, a very rapid increase of the skewness coefficient, as a function of the coefficient of variation, is observed (especially for the log-Gumbel distribution), which is seldom observed in the hydrological data. These probability distributions can be applied with confidence only to extreme situations. For other cases, there is an important disagreement between empirical data and theoretical distributions in their tails, which is very important for the characterization of the distribution asymmetry. The limited range of shape parameters in both distributions makes the analyses (such as the method of moments), that make use of the interpretation of moments, inconvenient. It is also shown that the often-used L-moments are not sufficient for the characterization of the location, scale and shape parameters of pdfs, particularly in the case where attention is paid to the tail part of probability distributions. The maximum likelihood method guarantees an asymptotic convergence of the estimators beyond the domain of the existence of the first two moments (or L-moments), but it is not sensitive enough to the upper tails shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号