首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rising in the Andes, the Madeira River drains the southwestern part of the Amazon basin, which is characterized by high geographical, biological and climatic diversity. This study uses daily records to assess the spatio-temporal runoff variability in the Madeira sub-basins. Results show that inter-annual variability of both discharge and rainfall differs between Andean and lowland tributaries. High-flow discharge variability in the Andean tributaries and the Guaporé River is mostly related to sea surface temperature (SST) in the equatorial Pacific in austral summer, while tropical North Atlantic (TNA) SST modulates rainfall and discharge variability in the lowlands. There also is a downward trend in the low-flow discharge of the lowland tributaries which is not observed in the Andes. Because low-flow discharge values at most lowland stations are negatively related to the SST in the tropical North Atlantic, these trends could be explained by the warming of this ocean since the 1970s.
EDITOR A. Castellarin

ASSOCIATE EDITOR A. Viglione  相似文献   

2.
ABSTRACT

The high variability in the hydrological regime of the Eastern Hydrological Region (EHR) of Northeast Brazil often results in floods and droughts, leading to serious socio-economic issues. Therefore, this work aimed to investigate connections between spatiotemporal hydrological variability of the EHR and large-scale climate phenomena. Multivariate statistical techniques were applied to relate climate indices with hydrological variables within two representative river basins in the EHR. The results indicated a multi-annual relationship between the state of the sea surface temperature of the Atlantic and Pacific oceans and anomalous hydrological variability in the basins. In addition, the northern Tropical Atlantic conditions were shown to play an important role in modulating the long-term variability of the hydrological response of the basins, whilst only extreme ENSO anomalies seemed to affect the rainy season. This knowledge is an important step towards long-term prediction of hydrological conditions and contributes to the improvement of water resources planning and management in the EHR.  相似文献   

3.
F. Genz  L.D. Luz 《水文科学杂志》2013,58(5):1020-1034
Abstract

The hydrological regime of a river is defined by variables or representative curves that in turn have characteristics related to fluctuations in flow rates resulting from climate variability. Distinguishing between the causes of streamflow variations, i.e. those resulting from human intervention in the watershed and those due to climate variability, is not trivial. To discriminate the alterations resulting from climate variation from those due to regulation by dams, a reference hydrological regime was established using the classification of events based on mean annual streamflow anomalies and inferred climatic conditions. The applicability of this approach was demonstrated by analysis of the streamflow duration curves. An assessment of the hydrological regime in the lower reaches of the São Francisco River, Brazil, after the implementation of hydropower plants showed that the operation of the dams has been responsible for 59% of the hydrological changes, while the climate (in driest conditions) has contributed to 41% of the total changes.

Editor Z.W. Kundzewicz

Citation Genz, F. and Luz, L.D., 2012. Distinguishing the effects of climate on discharge in a tropical river highly impacted by large dams. Hydrological Sciences Journal, 57 (5), 1020–1034.  相似文献   

4.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

5.
Abstract

This study was carried out in the framework of the Surface Water and Ocean Topography (SWOT) programme of the French National Centre of Space Studies (CNES). Based on discharge measurements and Gravity Recovery and Climate Experiment (GRACE) determination of total water storage (TWS), we have investigated the hydrological variability of the main French drainage basins (Seine, Loire, Garonne and Rhône) using a wavelet approach (continuous wavelet analyses and wavelet coherence analyses). The results of this analysis have shown a coherence ranging between 82% and 90% for TWS and discharge, thus demonstrating the potential use of TWS for characterization of the hydrological variability of French rivers. Strong coherence between the four basin discharges (between 73% and 92%) and between their associated TWS data (from 82% to 98%) suggested a common external influence on hydrological variability. To determine this influence, we investigated the relationship between hydrological variability and the North Atlantic Oscillation (NAO), considered as an index of prevailing climate in Europe. Basin discharges show strong coherence with NAO, ranging between 64% and 72% over the period 1959–2010. The coherence between NAO and TWS was 62% to 67% for 2003–2009. This is similar to the coherence between NAO and basin discharges detected for the same period. According to these results, strong influence of the NAO was clearly observed on the TWS and discharges of the major French river basins.
Editor Z.W. Kundzewicz  相似文献   

6.
ABSTRACT

The summer precipitation (June–September) in the source region of the Yellow River accounts for about 70% of the annual total, playing an important role in water availability. This study divided the source region of the Yellow River into homogeneous zones based on precipitation variability using cluster analysis. Summer precipitation trends and teleconnections with global sea-surface temperatures (SST) and the Southern Oscillation Index (SOI) from 1961 to 2010 were investigated by Mann-Kendall test and Pearson product-moment correlation analysis. The results show that the northwest part (Zone 1) had a non-significantly increasing trend, and the middle and southeast parts (zones 2 and 3) that receive the most precipitation displayed a statistically significant decreasing trend for summer precipitation. The summer precipitation in the whole region showed statistically significant negative correlations with the central Pacific SST for 0–4 month lag and with the Southern Indian and Atlantic oceans SST for 5–8 month lag. Analyses of sub-regions reveal intricate and complex correlations with different SST areas that further explain the summer precipitation variability. The SOI had significant positive correlations, mainly for 0–2 months lag, with summer precipitation in the source region of the Yellow River. It is seen that El Niño Southern Oscillation (ENSO) events have an influence on summer precipitation, and the predominant negative correlations indicate that higher SST in equatorial Pacific areas corresponding to El Niño coincides with less summer precipitation in the source region of the Yellow River.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

7.
Abstract

Statistical tests have been widely used for several decades to identify and test the significance of trends in runoff and other hydrological data. The Mann-Kendall (M-K) trend test is commonly used in trend analysis. The M-K test was originally proposed for random data. Several variations of the M-K test, as well as pre-processing of data for use with it, have been developed and used. The M-K test under the scaling hypothesis has been developed recently. The basic objective of the research presented in this paper is to investigate the trends in Malaysian monthly runoff data. Identification of trends in runoff data is useful for planning water resources projects. Existence of statistically significant trends would also lead to identification of possible effects of climate change. Monthly runoff data for Malaysian rivers from the past three decades are analysed, in both five-year segments and entire data sequences. The five-year segments are analysed to investigate the variability in trends from one segment to another in three steps: (1) the M-K tests are conducted under random and correlation assumptions; (2) the Hurst scaling parameter is estimated and tested for significance; and (3) the M-K test under the scaling hypothesis is conducted. Thus the tests cover both correlation and scaling. The results show that the number of significant segments in Malaysian runoff data would be the same as those found under the assumption that the river flow sequences are random. The results are also the same for entire sequences. Thus, monthly Malaysian runoff data do not have statistically significant trends. Hence there are no indications of climate change in Malaysian runoff data.

Citation Rao, A. R., Azli, M. & Pae, L. J. (2011) Identification of trends in Malaysian monthly runoff under the scaling hypothesis. Hydrol. Sci. J. 56(6), 917–929.  相似文献   

8.
Long-term and high-resolution (∼1.2 km) satellite-derived sea surface temperature (SST) fields of a monthly mean time series for the 1985–1999 period, and a daily climatology have been calculated for the North West Atlantic Ocean. The SST fields extend from 78°W to 41°W in longitude, and 30°N to 56°N in latitude, encompassing the region off Cape Hatteras, North Carolina, to the southern Labrador Sea. The monthly mean time series, consists of 180 cloud-masked monthly mean SST fields, derived from a full-resolution NOAA/NASA Pathfinder SST data set for the 1985–1999 period. The satellite-derived monthly mean SST fields, as compared with in situ monthly mean near-surface ocean temperatures from buoys located in the western North Atlantic, yield an overall RMS difference of 1.15 °C. The daily climatology, which consists of 365 fields, was derived by applying a least-squares harmonic regression technique on the monthly mean SST time series for the full study period. The monthly mean and daily climatological SST fields will be useful for studying inter-annual variability related to climate variability of SST over the study domain.  相似文献   

9.
利用中等复杂程度热带大气和海洋模式研究了热带太平洋和大西洋SST通过风应力桥梁的相互作用.利用1958~1998年NCEP分析的海表面温度场(SST)强迫大气模式得到的表面风应力与NCEP分析的同期热通量共同驱动海洋模式,作为控制试验;和控制试验平行,但强迫大气模式的SST在某一海盆取为多年气候平均值的试验作为敏感性试验;比较控制试验与敏感性试验模拟,则可反映风应力桥梁作用下热带某海盆SST异常对其他海盆的影响.结果表明,热带某一海盆SST暖(冷)异常总是引起局地海盆表面西部西(东)风异常和东部东(西)风异常;热带太平洋SST暖(冷)异常导致的该海盆东部表面东(西)风异常可以扩展到热带大西洋,从而导致热带大西洋SST冷(暖)异常;热带大西洋SST暖(冷)异常导致的该海盆西部表面西(东)风异常可以扩展到热带太平洋,从而导致热带太平洋SST暖(冷)异常.  相似文献   

10.
The tropical Indian Ocean(TIO) displays a uniform basin-wide warming or cooling in sea surface temperature(SST) during the decay year of El Niδo-Southern Oscillation(ENSO) events. This warming or cooling is called the tropical Indian Ocean Basin Mode(IOBM). Recent studies showed that the IOBM dominates the interannual variability of the TIO SST and has impacts on the tropical climate from the TIO to the western Pacific. Analyses on a 148-year-long monthly coral δ 18 O record from the Seychelles Islands demonstrate that the Seychelles coral δ 18 O not only is associated with the local SST but also indicates the interannul variability of the basin-wide SST in the TIO. Moreover, the Seychelles coral δ 18 O shows a dominant period of 3–7 years that well represents the variability of the IOBM, which in return is modulated by the inter-decadal climate variability. The correlation between the Seychelles coral δ 18 O and the SST reveals that the coral δ 18 O lags the SST in the eastern equatorial Pacific by five months and reaches its peak in the spring following the mature phase of ENSO. The spatial pattern of the first EOF mode indicates that the Seychelles Islands are located at the crucial place of the IOBM. Thus, the Seychelles coral δ 18 O could be used as a proxy of the IOBM to investigate the ENSO teleconnection on the TIO in terms of long-time climate variability.  相似文献   

11.
12.
Abstract

Seasonality is an important hydrological signature for catchment comparison. Here, the relevance of monthly precipitation–runoff polygons (defined as scatter points of 12 monthly average precipitation–runoff value pairs connected in the chronological monthly sequence) for characterizing seasonality patterns was investigated to describe the hydrological behaviour of 10 catchments spanning a climatic gradient across the northern temperate region. Specifically, the research objectives were to: (a) discuss the extent to which monthly precipitation–runoff polygons can be used to infer active hydrological processes in contrasting catchments; (b) test the ability of quantitative metrics describing the shape, orientation and surface area of monthly precipitation–runoff polygons to discriminate between different seasonality patterns; and (c) examine the value of precipitation–runoff polygons as a basis for catchment grouping and comparison. This study showed that some polygon metrics were as effective as monthly average runoff coefficients for illustrating differences between the 10 catchments. The use of precipitation–runoff polygons was especially helpful to look at the dynamics prevailing in specific months and better assess the coupling between precipitation and runoff and their relative degree of seasonality. This polygon methodology, linked with a range of quantitative metrics, could therefore provide a new simple tool for understanding and comparing seasonality among catchments.

Editor Z.W. Kundzewicz; Associate editor K. Heal

Citation Ali, G., Tetzlaff, D., Kruitbos, L., Soulsby, C., Carey, S., McDonnell, J., Buttle, J., Laudon, H., Seibert, J., McGuire, K., and Shanley, J., 2013. Analysis of hydrological seasonality across northern catchments using monthly precipitation–runoff polygon metrics. Hydrological Sciences Journal, 59 (1), 56–72.  相似文献   

13.
Abstract

This paper introduces a reference hydrometric network for Ireland and examines the derived flow archive for evidence of climate-driven trends in mean and high river flows. The Mann-Kendall and Theil-Sen tests are applied to eight hydroclimatic indicators for fixed and variable (start and end date) records. Spatial coherence and similarities of trends with rainfall suggest they are climate driven; however, large temporal variability makes it difficult to discern widely-expected anthropogenic climate change signals at this point in time. Trends in summer mean flows and recent winter means are at odds with those expected for anthropogenic climate change. High-flow indicators show strong and persistent positive trends, are less affected by variability and may provide earlier climate change signals than mean flows. The results highlight the caution required in using fixed periods of record for trend analysis, recognizing the trade-off between record length, network density and geographic coverage.

Editor Z.W. Kundzewicz; Associate editor H. Lins

Citation Murphy, C., Harrigan, S., Hall, J., and Wilby, R.L., 2013. Climate-driven trends in mean and high flows from a network of reference stations in Ireland. Hydrological Sciences Journal, 58 (4), 755–772.  相似文献   

14.
Abstract

In order to predict the impact of pollution incidents on rivers, it is necessary to predict the dispersion coefficient and the flow velocity corresponding to the discharge in the river of interest. This paper explores methods for doing this, particularly with a view to applications on ungauged rivers, i.e. those for which little hydraulic or morphometric data are available. An approach based on neural networks, trained on a wide-ranging database of optimized parameter values from tracer experiments and corresponding physical variables assembled for American and European rivers, is proposed. Tests using independent cases showed that the neural networks generally gave more reliable parameter estimates than a second-order polynomial regression approach. The quality of predictions of temporal concentration profiles was heavily influenced by the accuracy of the velocity prediction.

Citation Piotrowski, A. P., Napiorkowski, J. J., Rowinski, P. M. & Wallis, S. G. (2011) Evaluation of temporal concentration profiles for ungauged rivers following pollution incidents. Hydrol. Sci. J. 56(5), 883–894.  相似文献   

15.
Abstract

Characterization of the seasonal and inter-annual spatial and temporal variability of rainfall in a changing climate is vital to assess climate-induced changes and suggest adequate future water resources management strategies. Trends in annual, seasonal and maximum 30-day extreme rainfall over Ethiopia are investigated using 0.5° latitude?×?0.5° longitude gridded monthly precipitation data. The spatial coherence of annual rainfall among contiguous rainfall grid points is also assessed for possible spatial similarity across the country. The correlation between temporally coinciding North Atlantic Multidecadal Oscillation (AMO) index and annual rainfall variability is examined to understand the underlying coherence. In total 381 precipitation grid points covering the whole of Ethiopia with five decades (1951–2000) of precipitation data are analysed using the Mann-Kendall test and Moran spatial autocorrelation method. Summer (July–September) seasonal and annual rainfall data exhibit significant decreasing trends in northern, northwestern and western parts of the country, whereas a few grid points in eastern areas show increasing annual rainfall trends. Most other parts of the country exhibit statistically insignificant trends. Regions with high annual and seasonal rainfall distribution exhibit high temporal and spatial correlation indices. Finally, the country is sub-divided into four zones based on annual rainfall similarity. The association of the AMO index with annual rainfall is modestly good for northern and northeastern parts of the country; however, it is weak over the southern region.

Editor Z.W. Kundzewicz; Associate editor S. Uhlenbrook

Citation Wagesho, N., Goel, N.K., and Jain, M.K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58 (2), 354–373.  相似文献   

16.
Abstract

Techniques are proposed for developing a monthly and weekly drought outlook and the drought outlook components are evaluated. A drought index, the surface water supply index (SWSI) was modified and used for the drought outlook. A water balance model (abcd) was successfully calibrated using a regional regression, including monthly and weekly factors, and was used to convert meteorology to hydrology. For the monthly drought outlook, an ensemble technique was applied, both with and without monthly industrial meteorology information (MIMI). For the weekly drought outlook, a deterministic forecasting technique was applied employing the Global Data Assimilation and Prediction System (GDAPS). The methodologies were applied to the Geum River basin in Korea. While only the weekly outlook using the GDAPS has sufficient forecasting capability to suggest it might be useful, the accuracy of the monthly drought outlook is expected to improve as the climate forecast accuracy increases.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Kim, Y.-O., Lee, J.-K., and Palmer, R.N., 2012. A drought outlook study in Korea. Hydrological Sciences Journal, 57 (6), 1141–1153.  相似文献   

17.
Abstract

To advance understanding of hydroclimatological processes, this paper links spatiotemporal variability in gridded European precipitation and large-scale mean sea-level pressure (MSLP) time series (1957–2002) using monthly concurrent correlation. Strong negative (positive) correlation near Iceland and (the Azores) is apparent for precipitation in northwest Europe, confirming a positive North Atlantic Oscillation (NAO) association. An opposing pattern is found for southwest Europe, and the Mediterranean in winter. In the lee of mountains, MSLP correlation is lower reflecting reduced influence of westerlies on precipitation generation. Importantly, European precipitation is shown to be controlled by physically interpretable climate patterns that change in extent and position from month to month. In spring, MSLP–precipitation correlation patterns move and shrink, reaching a minimum in summer, before expanding in the autumn, and forming an NAO-like dipole in winter. These space–time shifts in correlation regions explain why fixed-point NAO indices have limited ability to resolve precipitation for some European locations and seasons.

Editor Z.W. Kundzewicz; Associate editor A. Montanari

Citation Lavers, D., Prudhomme, C., and Hannah, D.M., 2013. European precipitation connections with large-scale mean sea-level pressure (MSLP) fields. Hydrological Sciences Journal, 58 (2), 310–327.  相似文献   

18.
ENSO and the natural variability in the flow of tropical rivers   总被引:1,自引:0,他引:1  
This paper examines the relationship between the annual discharges of the Amazon, Congo, Paran á, and Nile rivers and the sea surface temperature (SST) anomalies of the eastern and central equatorial Pacific Ocean, an index of El Niño-Southern Oscillation (ENSO). Since river systems are comprehensive integrators of rainfall over large areas, accurate characterization of the flow regimes in major rivers will increase our understanding of large-scale global atmospheric dynamics. Results of this study reveal that the annual discharges of two large equatorial tropical rivers, the Amazon and the Congo, are weakly and negatively correlated with the equatorial Pacific SST anomalies with 10% of the variance in annual discharge explained by ENSO. Two smaller subtropical rivers, the Nile and the Paraná, show a correlation that is stronger by about a factor of 2. The Nile discharge is negatively correlated with the SST anomaly, whereas the Paraná river discharge shows a positive relation. The tendency for reduced rainfall/discharge over large tropical convection zones in the ENSO warm phase is attributed to global scale subsidence associated with major upwelling in the eastern Pacific Ocean.  相似文献   

19.
20.
Abstract

Abstract Results of studies related to the effect of snow accumulation and snowmelt on river regimes of the central Spanish Pyrenees are presented. Streamflow of the Pyrenean rivers is characterized by low and constant discharges during winter because of accumulation of snow in the basins above 1600 m a.s.l., and high and fluctuating discharges during spring due to snowmelt and rainfall. Regional discharge contrasts have been assessed in relation to the Atlantic influence and the percentage of high altitude areas in each basin. In most of the Pyrenean basins, snowmelt contributes more to the discharge than rainfall in the spring. The analysis of data shows a decrease in winter precipitation in the last 50 years causing a decrease in both winter and spring discharges and introducing changes in the distribution of streamflow throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号