首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A river flow regime describes an average seasonal behaviour of flow and reflects the climatic and physiographic conditions in a basin. Differences in the regularity (stability) of the seasonal patterns reflect different dimensionality of the flow regimes, which can change subject to changes in climate conditions. The empirical orthogonal functions (EOF) approach can be used to describe the intrinsic dimension of river flow regimes and is also an adopted method for reducing the phase space in connection to climate change studies, especially in studies of nonlinear dynamic systems with preferred states. A large data set of monthly river flow for the Nordic countries has been investigated in the phase space reduced to the first few amplitude functions to trace a possible signature of climate change on the seasonal flow patterns. The probability density functions (PDF) of the weight coefficients and their possible change over time were used as an indicator of climate change. Two preferred states were identified connected to stable snowmelt-fed and rainfed flow regimes. The results indicate changes in the PDF patterns with time towards higher frequencies of rainfed regime types. The dynamics of seasonal patterns studied in terms of PDF renders it an adequate and convenient characterization, helping to avoid bias connected to flow regime classifications as well as uncertainties inferred by a modelling approach.  相似文献   

2.
The warming of the Earth's atmosphere system is likely to change temperature and precipitation, which may affect the climate, hydrology and water resources at the river basins over the world. The importance of temperature change becomes even greater in snow or glacier dominated basins where it controls the snowmelt processes during the late‐winter, spring and summer months. In this study hydrologic responses of streamflow in the Pyanj and Vaksh River basins to climate change are analysed with a watershed hydrology model, based on the downscaled atmospheric data as input, in order to assess the regional climate change impact for the snowfed and glacierfed river basins in the Republic of Tajikistan. As a result of this analysis, it was found that the annual mean river discharge is increasing in the future at snow and glacier dominated areas due to the air temperature increase and the consequent increase in snow/ice melt rates until about 2060. Then the annual mean flow discharge starts to decrease from about 2080 onward because the small glaciers start to disappear in the glacier areas. It was also found that there is a gradual change in the hydrologic flow regime throughout a year, with the high flows occuring earlier in the hydrologic year, due to the warmer climate in the future. Furthermore, significant increases in annual maximum daily flows, including the 100‐year return period flows, at the Pyanj and Vaksh River basins toward the end of the 21st century can be inferred from flood frequency analysis results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   

4.
Snow cover depletion curves are required for several water management applications of snow hydrology and are often difficult to obtain automatically using optical remote sensing data owing to both frequent cloud cover and temporary snow cover. This study develops a methodology to produce accurate snow cover depletion curves automatically using high temporal resolution optical remote sensing data (e.g. Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS or National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)) by snow cover change trajectory analysis. The method consists of four major steps. The first is to reclassify both cloud‐obscured land and snow into more distinct subclasses and to determine their snow cover status (seasonal snow cover or not) based on the snow cover change trajectories over the whole snowmelt season. The second step is to derive rules based on the analysis of snow cover change trajectories. These rules are subsequently used to determine for a given date, the snow cover status of a pixel based on snow cover maps from the beginning of the snowmelt season to that given date. The third step is to apply a decision‐tree‐like processing flow based on these rules to determine the snow cover status of a pixel for a given date and to create daily seasonal snow cover maps. The final step is to produce snow cover depletion curves using these maps. A case study using this method based on Terra MODIS snow cover map products (MOD10A1) was conducted in the lower and middle reaches of the Kaidu River Watershed (19 000 km2) in the Chinese Tien Shan, Xinjiang Uygur Autonomous Region, China. High resolution remote sensing data (charge coupled device (CCD) camera data with 19·5 m resolution of the China and Brazil Environmental and Resources Satellite (CBERS) data (19·5 m resolution), and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 15 m resolution of the Terra) were used to validate the results. The study shows that the seasonal snow cover classification was consistent with that determined using a high spatial resolution dataset, with an accuracy of 87–91%. The snow cover depletion curves clearly reflected the impact of the variation of temperature and the appearance of temporary snow cover on seasonal snow cover. The findings from this case study suggest that the approach is successful in generating accurate snow cover depletion curves automatically under conditions of frequent cloud cover and temporary snow cover using high temporal resolution optical remote sensing data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Most natural disasters are caused by water‐/climate‐related hazards, such as floods, droughts, typhoons, and landslides. In the last few years, great attention has been paid to climate change, and especially the impact of climate change on water resources and the natural disasters that have been an important issue in many countries. As climate change increases the frequency and intensity of extreme rainfall, the number of water‐related disasters is expected to rise. In this regard, this study intends to analyse the changes in extreme weather events and the associated flow regime in both the past and the future. Given trend analysis, spatially coherent and statistically significant changes in the extreme events of temperature and rainfall were identified. A weather generator based on the non‐stationary Markov chain model was applied to produce a daily climate change scenario for the Han River basin for a period of 2001–2090. The weather generator mainly utilizes the climate change SRES A2 scenario driven by input from the regional climate model. Following this, the SLURP model, which is a semi‐distributed hydrological model, was applied to produce a long‐term daily runoff ensemble series. Finally, the indicator of hydrologic alteration was applied to carry out a quantitative analysis and assessment of the impact of climate change on runoff, the river flow regime, and the aquatic ecosystem. It was found that the runoff is expected to decrease in May and July, while no significant changes occur in June. In comparison with historical evidence, the runoff is expected to increase from August to April. A remarkable increase, which is about 40%, in runoff was identified in September. The amount of the minimum discharge over various durations tended to increase when compared to the present hydrological condition. A detailed comparison for discharge and its associated characteristics was discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Many of the Japanese regions subject to seasonal snow cover are characterized by low elevations and relatively high winter temperatures. A small change in winter temperatures could render many of these areas susceptible to snow cover change and consequently affect water resources management. This paper describes a climatological approach combined with an AGCM output to identify the regions and main river basins most sensitive to snow cover change in the case of climate change in Japan. It was found that a 1°C rise in temperature during the winter season could increase the snow-free area of Japan by 6%. The snow cover of Tohoku region and Mogami and Agano river basins was found to be the most sensitive to climate change. The AGCM output for a future scenario presents a reduction in total snowfall and an earlier peak in snowmelt for all regions.

Editor Z.W. Kundzewicz

Citation Chaffe, P.L.B, Takara, K, Yamashiki, Y, Apip, Luo, P., Silva, R.V., and Nakakita, E., 2013. Mapping of Japanese areas susceptible to snow cover change. Hydrological Sciences Journal, 58 (8), 1718–1728.  相似文献   

7.
Flow regimes have been severely altered by climate change and human activities in recent decades, which has led to ecological degradation in rivers. This study proposes an analogy analysis-based framework, coupled with the Pettitt test, the indicators of hydrological alteration and the range of variation approach, which were used to distinguish the different effects. This framework was applied to the Sha River, a typical river in North China, to test its effectiveness. The results show that: (i) human disturbance had larger effects on pre-flood flow magnitude, the timing, frequency and duration of high and low pulse, and the flow change rate; (ii) climate change mainly influences the magnitude of flood and post-flood flows, and of extreme events; and (iii) the probability of high alteration from the target frequency increased by 69.7% due to the combined impacts. These results can provide valuable references for water resource and aquatic ecosystem management.  相似文献   

8.
The study applies the improved cloud‐free moderate resolution imaging spectral radiometer daily snow cover product (MODMYD_MC) to investigate the snow cover variations from snow hydrologic year (HY) HY2000 to HY2013 in the Amur River basin (ARB), Northeast Asia. The fractions of forest cover were 38%, 63%, and 47% in 2009 in China (the southern ARB), Russia (the northern ARB), and ARB, respectively. Validation results show that MODMYD_MC has a snow agreement of 88% against in situ snow depth (SD) observations (SD ≥ 4 cm). The agreement is about 10% lower at the forested stations than at the nonforested stations. Snow cover durations (SCDs) from MODMYD_MC are 20 days shorter than ground observations (SD ≥ 1 cm) at the forested stations, whereas they are just 8 days shorter than ground observations (SD ≥ 1 cm) at the nonforested stations. Annual mean SCDs from MODMYD_MC in the forested areas are 21 days shorter than those in the nearby farmland in the Sanjiang Plain. This indicates forest has a complex influence on the snow accumulation and melting processes and even on optical satellite snow cover mapping. Meanwhile, SCD and mean snow cover are negatively correlated with air temperature in ARB, especially in the snow melting season, when mean air temperature in March and April can explain 86% and 74% of the mean snow cover variations in China ARB and Russia ARB, respectively. From 1961 to 2015, the annual mean air temperature presented an increased trend by 0.33 °C/decade in both China ARB and Russia ARB, whereas it had a decrease trend from HY2000 to HY2013. The decrease of air temperature led to an increase of snow cover, which is different from the global decrease trend of snow cover variations. SCD and snow cover had larger increase rates in China ARB than in Russia ARB, and they were larger in the forested areas than in the nearby farmland in the Sanjiang Plain.  相似文献   

9.
Understanding how land cover change will impact water resources in snow-dominated regions is of critical importance as these locations produce disproportionate runoff relative to their land area. We coupled a land cover evolution model with a spatially explicit, physics-based, watershed process model to simulate land cover change and its impact on the water balance in a 5.0 km2 headwater catchment spanning the alpine–subalpine transition on the Colorado Front Range. We simulated two potential futures both with greater air temperature (+4°C/century) and more precipitation (+15%/century, MP) or less precipitation (−15%/century, LP) from 2000 to 2100. Forest cover in the catchment increased from 72% in 2000 to 84% and 83% in 2050 and to 95% and 92% in 2100 for MP and LP, respectively. Surprisingly, increases in forest cover led to mean increases in annual streamflow production of 12 mm (6%) and 2 mm (1%) for MP and LP in 2050 with an annual control streamflow of 208 mm. In 2100, mean streamflow production increased by 91 mm (44%) and 61 mm (29%) for MP and LP. This result counters previous work as runoff production increased with forested area due to decreases in snow wind-scour and increases in drifting leeward of vegetation, highlighting the need to better understand the impacts of forest expansion on the spatial pattern of snow scour, deposition and catchment effective precipitation. Identifying the hydrologic response of mountainous areas to climate warming induced land cover change is critically important due to the potential water resources impacts on downstream regions.  相似文献   

10.
Global climate change will likely increase temperature and variation in precipitation in the Himalayas, modifying both supply of and demand for water. This study assesses combined impacts of land‐cover and climate changes on hydrological processes and a rainfall‐to‐streamflow buffer indicator of watershed function using the Soil Water Assessment Tool (SWAT) in Kejie watershed in the eastern Himalayas. The Hadley Centre Coupled Model Version 3 (HadCM3) was used for two Intergovernmental Panel on Climate Change (IPCC) emission scenarios (A2 and B2), for 2010–2099. Four land‐cover change scenarios increase forest, grassland, crops, or urban land use, respectively, reducing degraded land. The SWAT model predicted that downstream water resources will decrease in the short term but increase in the long term. Afforestation and expansion in cropland will probably increase actual evapotranspiration (ET) and reduce annual streamflow but will also, through increased infiltration, reduce the overland flow component of streamflow and increase groundwater release. An expansion in grassland will decrease actual ET, increase annual streamflow and groundwater release, while decreasing overland flow. Urbanization will result in increases in streamflow and overland flow and reductions in groundwater release and actual ET. Land‐cover change dominated over effects on streamflow of climate change in the short and middle terms. The predicted changes in buffer indicator for land‐use plus climate‐change scenarios reach up to 50% of the current (and future) range of inter‐annual variability. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A one‐dimensional hydrodynamic lake model (DYRESM‐WQ‐I) is employed to simulate ice cover and water temperatures over the period 1911–2014. The effects of climate changes (air temperature and wind speed) on ice cover (ice‐on, ice‐off, ice cover duration, and maximum ice thickness) are modeled and compared for the three different morphometry lakes: Fish Lake, Lake Wingra, and Lake Mendota, located in Madison, Wisconsin, USA. It is found that the ice cover period has decreased due to later ice‐on dates and earlier ice‐off dates, and the annual maximum ice cover thickness has decreased for the three lakes during the last century. Based upon simulated perturbations of daily mean air temperatures across the range of ?10°C to +10°C of historical values, Fish Lake has the most occurrences of no ice cover and Lake Wingra still remains ice covered under extreme conditions (+10°C). Overall, shallower lakes with larger surface areas appear more resilient to ice cover changes caused by climate changes.  相似文献   

12.
The Irtysh River is the main water resource of Eastern Kazakhstan and its upper basin is severely affected by spring floods each year, primarily as a result of snowmelt. Knowledge of the large-scale processes that influence the timing of these snow-induced floods is currently lacking, but critical for the management of water resources in the area. In this study, we evaluated the variability in winter–spring snow cover in five major sub-basins of the Upper Irtysh basin between 2000 and 2017 as a possible explanatory factor of spring flood events, assessing the time of peak snow cover depletion rate and snow cover disappearance from the moderate-resolution imaging spectroradiometer (MODIS) MOD10A2 data set. We found that on average, peak snow cover retreat occurs between 22 March and 14 April depending on the basin, with large interannual variations but no clear trend over the MODIS period, while our comparative analysis of longer-term snow cover extent from the National Oceanic and Atmospheric Administration Climate Data Record data set suggests a shift to earlier snow cover disappearance since the 1970s. In contrast, the annual peak snow cover depletion rate displays a weak increasing trend over the study period and exceeded 5,900 km2/day in 2017. The timing of snow disappearance in spring shows significant correlations of up to 0.82 for the largest basin with winter indices of the Arctic Oscillation (AO) over the region. The primary driver is the impact of the large-scale pressure anomalies upon the mean spring (MAM) air temperatures and resultant timing of snow cover disappearance, particularly at elevations 500–2,000 m above sea level. This suggests a lagged effect of this atmospheric circulation pattern in spring snow cover retreat. The winter AO index could therefore be incorporated into long-term runoff forecasts for the Irtysh. Our approach is easily transferable to other similar catchments and could support flood management strategies in Kazakhstan and other countries.  相似文献   

13.
Abstract

Climate variability and change play a crucial role in the vulnerable system of the Aksu River basin located in Kyrgyzstan and northwest China, providing precious water resources for the intense oasis agriculture of the Xinjiang Province (China). Ubiquitous warming and increase in precipitation (in the lower part of the basin) have been detected. Glaciers in the region are retreating. Seasonal trends in river discharge show an increase. A clear link could be demonstrated between daily temperature and lagged river discharge at two headwater stations in summer. However, the correlation breaks over short periods in the end of summer or beginning of autumn at the Xiehela station, when the high (over 95th percentile) flow peaks caused by the glacier lake outburst floods of the Merzbacher Lake occur. This feature is a challenge for the climate impact assessment in the region, as these regular outbursts have to be represented in the projections for the future as well.
Editor D. Koutsoyiannis  相似文献   

14.
The temporal and spatial continuity of spatially distributed estimates of snow‐covered area (SCA) are limited by the availability of cloud‐free satellite imagery; this also affects spatial estimates of snow water equivalent (SWE), as SCA can be used to define the extent of snow telemetry (SNOTEL) point SWE interpolation. In order to extend the continuity of these estimates in time and space to areas beneath the cloud cover, gridded temperature data were used to define the spatial domain of SWE interpolation in the Salt–Verde watershed of Arizona. Gridded positive accumulated degree‐days (ADD) and binary SCA (derived from the Advanced Very High Resolution Radiometer (AVHRR)) were used to define a threshold ADD to define the area of snow cover. The optimized threshold ADD increased during snow accumulation periods, reaching a peak at maximum snow extent. The threshold then decreased dramatically during the first time period after peak snow extent owing to the low amount of energy required to melt the thin snow cover at lower elevations. The area having snow cover at this later time was then used to define the area for which SWE interpolation was done. The area simulated to have snow was compared with observed SCA from AVHRR to assess the simulated snow map accuracy. During periods without precipitation, the average commission and omission errors of the optimal technique were 7% and 11% respectively, with a map accuracy of 82%. Average map accuracy decreased to 75% during storm periods, with commission and omission errors equal to 11% and 12% respectively. The analysis shows that temperature data can be used to help estimate the snow extent beneath clouds and therefore improve the spatial and temporal continuity of SCA and SWE products. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Min Xu  Hao Wu  Shichang Kang 《水文研究》2018,32(1):126-145
The Tianshan Mountains represent an important water source for the arid and semi‐arid regions of Central Asia. The discharge and glacier mass balance (GMB) in the Tianshan Mountains are sensitive to changes in climate. In this study, the changes in temperature, precipitation, and discharge of six glacierized watersheds of Tianshan Mountains were explored using non‐parametric tests and wavelet transforms during 1957–2004. On the basis of the statistical mechanics and maximum entropy principle model, the GMB at the watershed scale were reconstructed for the study period. The discharge and GMB responses to climate change were examined in different watersheds. The results showed that regional climate warming was obvious, especially after 1996. The warming trend increased gradually from east to west, and the increase in temperature was greater on the north slope than on the south slope. The changing trends in precipitation increased from eastern region to central region, and then, the trend decreased in the western region, although the value was higher than that in the eastern region. The discharge presented significant periods of 2.7–5.4 years and increased from east to west. Significant periodicity indicated that the discharge in the different watersheds exhibited obviously different patterns. The GMB losses were larger in south and east than in north. The large glaciers had more stable interannual variations in discharge, and large fluctuations in discharge will be observed as the glacier areas shrink. Precipitation was the dominant factor for discharge during the study period, although the influence of increasing temperatures on hydrological regimes should not be neglected in the long term. Systematic differences in discharge and the GMB in glacierized watersheds in response to climate change are apparent in the Tianshan Mountains.  相似文献   

16.
Seasonal snow cover in mountainous regions will affect local climate and hydrology. In this study, we assessed the role of altitude in determining the relative importance of temperature and precipitation in snow cover variability in the Central Tianshan Mountains. The results show that: (a) in the study area, temperature has a greater influence on snow cover than precipitation during most of the time period studied and in most altitudes. (b) In the high elevation area, there is a threshold altitude of 3,900 ± 400 m, below which temperature is negatively correlated whereas precipitation is positively correlated to snow cover, and above which the situation is the opposite. Besides, this threshold altitude decreases from snow accumulated period to snow stable period and then increases from snowmelt period to snow‐free period. (c) Below 2,000 m, there is another threshold altitude of 1,400 ± 100 m during the snow stable period, below (above) which precipitation (temperature) is the main driver of snow cover.  相似文献   

17.
Snow variability is an integrated indicator of climate change, and it has important impacts on runoff regimes and water availability in high‐altitude catchments. Remote sensing techniques can make it possible to quantitatively detect the snow cover changes and associated hydrological effects in those poorly gauged regions. In this study, the spatial–temporal variations of snow cover and snow melting time in the Tuotuo River basin, which is the headwater of the Yangtze River, were evaluated based on satellite information from the Moderate Resolution Imaging Spectroradiometer snow cover product, and the snow melting equivalent and its contribution to the total runoff and baseflow were estimated by using degree–day model. The results showed that the snow cover percentage and the tendency of snow cover variability increased with rising altitude. From 2000 to 2012, warmer and wetter climate change resulted in an increase of the snow cover area. Since the 1960s, the start time for snow melt has become earlier by 0.9–3 days/10a and the end time of snow melt has become later by 0.6–2.3 days/10a. Under the control of snow cover and snow melting time, the equivalent of snow melting runoff in the Tuotuo River basin has been fluctuating. The average contributions of snowmelt to baseflow and total runoff were 19.6% and 6.8%, respectively. Findings from this study will serve as a reference for future research in areas where observational data are deficient and for planning of future water management strategies for the source region of the Yangtze River. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Understanding how rivers respond to changes in land cover, climate, and subsurface conditions is critical for sustainably managing water resources and ecosystems. In this study, long‐term hydrologic, climate, and satellite data (1973–2012) from the Upper Tahe River watershed (2359 km2) in the Da Hinggan Mountains of northeast China were analysed to quantify the relative hydrologic effects of climate variability (system input) and the combined influences of forest cover change and permafrost thaw (system characteristics) on average annual streamflow (system response) using 2 methods: the sensitivity‐based method and the Kendall–Theil robust line method. The study period was subdivided into a forest harvesting period (1973–1987), a forest stability period (1988–2001), and a forest recovery period (2002–2012). The results indicated that the combined effects of forest harvesting and permafrost thaw on streamflow (+ 47.0 mm) from the forest harvesting period to the forest stability period was approximately twice as large as the effect associated with climate variability (+20.2 mm). Similarly, from the forest stability period to the forest recovery period, the decrease in average annual streamflow attributed to the combined effects of forest recovery and permafrost thaw (?38.0 mm) was much greater than the decrease due to climate variability (?22.2 mm). A simple method was used to separate the distinct impacts of forest cover change and permafrost thaw, but distinguishing these influences is difficult due to changes in surface and subsurface hydrologic connectivity associated with permafrost thaw. The results highlight the need to consider multiple streamflow drivers in future watershed and aquatic ecosystem management. Due to the ecological and hydrological susceptibility to disturbances in the Da Hinggan Mountains, forest harvesting will likely negatively impact ecohydrological processes in this region, and the effects of forest species transition in the forest recovery process should be further investigated.  相似文献   

19.
Sublimation from thin snow cover at the edge of the Eurasian cryosphere in Mongolia was calculated using the aerodynamic profile method and verified by eddy covariance observations using multiple‐level meteorological data from three sites representing a variety of geographic and vegetative conditions in Mongolia. Data were collected in the winter and analysed from three sites. Intense sublimation events, defined by daily sublimation levels of more than 0·4 mm, were predominant in their effect on the temporal variability of sublimation. The dominant meteorological elements affecting sublimation were wind speed and air temperature, with the latter affecting sublimation indirectly through the vapour deficit. Seasonal and interannual variations in sublimation were investigated using long‐interval estimations for 19 years at a mountainous‐area meteorological station and for 24 years at a flat‐plain meteorological station. The general seasonal pattern indicated higher rates of sublimation in both the beginning and ending of the snow‐covered period, when the wind speed and vapour deficit were higher. Annual sublimation averaged 11·7 mm at the flat‐plain meteorological station, or 20·3% of the annual snowfall, and 15·7 mm at the site in the mountains, or 21·6% of snowfall. The sum of snow sublimation and snowmelt evaporation represented 17 to 20% of annual evapotranspiration in a couple observation years. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Rain‐on‐snow events have generated major floods around the world, particularly in coastal, mountainous regions. Most previous studies focused on a limited number of major rain‐on‐snow events or were based primarily on model results, largely due to a lack of long‐term records from lysimeters or other instrumentation for quantifying event water balances. In this analysis, we used records from five automated snow pillow sites in south coastal British Columbia, Canada, to reconstruct event water balances for 286 rain‐on‐snow events over a 10‐year period. For large rain‐on‐snow events (event rainfall >40 mm), snowmelt enhanced the production of water available for run‐off (WAR) by approximately 25% over rainfall alone. For smaller events, a range of antecedent and meteorological factors influenced WAR generation, particularly the antecedent liquid water content of the snowpack. Most large events were associated with atmospheric rivers. Rainfall dominated WAR generation during autumn and winter events, whereas snowmelt dominated during spring and summer events. In the majority of events, the sensible heat of rain contributed less than 10% of the total energy consumed by snowmelt. This analysis illustrated the importance of understanding the amount of rainfall occurring at high elevations during rain‐on‐snow events in mountainous regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号