首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Nonstationary GEV-CDN models considering time as a covariate are built for evaluating the flood risk and failure risk of the major flood-control infrastructure in the Pearl River basin, China. The results indicate: (1) increasing peak flood flow is observed in the mainstream of the West River and North River basins and decreasing peak flood flow is observed in the East River basin; in particular, increasing peak flood flow is detected in the mainstream of the lower Pearl River basin and also in the Pearl River Delta region, the most densely populated region of the Pearl River basin; (2) differences in return periods analysed under stationarity and nonstationarity assumptions are found mainly for floods with return periods longer than 50 years; and (3) the failure risks of flood-control infrastructure based on failure risk analysis are higher under the nonstationarity assumption than under the stationarity assumption. The flood-control infrastructure is at higher risk of flood and failure under the influence of climate change and human activities in the middle and lower parts of Pearl River basin.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR G. Thirel  相似文献   

2.
Abstract

The Easter 1998 flood was the largest flood event in the gauged record of many basins of the English Midlands. Flood frequency analysis, using such gauged records only, placed the 1998 event at a return period of over 100 years on several basins. However a review of historical (pre-gauged) flooding on some rivers gives a different perspective. Examples are given of the use of historical flood information on the River Leam, the River Wreake at Melton Mowbray, the River Sence (tributary to the River Soar) and the River Frome at Stroud. The cost of acquiring such historical flood data is trivial in comparison to gauged data, but the benefits are demonstrated as significant. In particular, historical flood data provide a better basis for risk assessment and planning on flood plains through revised estimates of flood discharge and depth.  相似文献   

3.
Abstract

This study contributes to the comprehensive assessment of flood hazard and risk for the Phrae flood plain of the Yom River basin in northern Thailand. The study was carried out using a hydrologic–hydrodynamic model in conjunction with a geographic information system (GIS). The model was calibrated and verified using the observed rainfall and river flood data during flood seasons in 1994 and 2001, respectively. Flooding scenarios were evaluated in terms of flooding depth for events of 25-, 50-, 100- and 200-year return periods. An impact-based hazard estimation technique was applied to assess the degree of hazard across the flood plain. The results showed that 78% of the Phrae flood-plain area of 476 km2 in the upper Yom River basin lies in the hazard zone of the 100-year return-period flood. Risk analyses were performed by incorporating flood hazard and the vulnerability of elements at risk. Based on relative magnitude of risk, flood-prone areas were divided into low-, moderate-, high- and severe-risk zones. For the 100-year return-period flood, the risk-free area was found to be 22% of the total flood plain, while areas under low, medium, high and severe risk were 33, 11, 28 and 6%, respectively. The outcomes are consistent with overall property damage recorded in the past. The study identifies risk areas for priority-based flood management, which is crucial when there is a limited budget to protect the entire risk zone simultaneously.

Citation Tingsanchali, T. & Karim, F. (2010) Flood-hazard assessment and risk-based zoning of a tropical flood plain: case study of the Yom River, Thailand. Hydrol. Sci. J. 55(2), 145–161.  相似文献   

4.
Abstract

Pakistan has suffered a devastating flood disaster in 2010. In the Kabul River basin (92 605 km2), large-scale riverine and flash floods caused destructive damage with more than 1100 casualties. This study analysed rainfall–runoff and inundation in the Kabul River basin with a newly developed model that simulates the processes of rainfall–runoff and inundation simultaneously based on two-dimensional diffusion wave equations. The simulation results showed a good agreement with an inundation map produced based on MODIS for large-scale riverine flooding. In addition, the simulation identified flash flood-affected areas, which were confirmed to be severely damaged based on a housing damage distribution map. Since the model is designed to be used even immediately after a disaster, it can be a useful tool for analysing large-scale flooding and to provide supplemental information to agencies for relief operations.

Editor Z.W. Kundzewicz

Citation Sayama, T., Ozawa, G., Kawakami, T., Nabesaka, S. and Fukami, K., 2012. Rainfall–runoff–inundation analysis of the 2010 Pakistan flood in the Kabul River basin. Hydrological Sciences Journal, 57 (2), 298–312.  相似文献   

5.
Abstract

Different methodologies for flood-plain mapping are analysed and discussed by comparing deterministic and probabilistic approaches using hydrodynamic numerical solutions. In order to facilitate the critical discussion, state-of-art techniques in the field of flood inundation modelling are applied to a specific test site (River Dee, UK). Specifically, different flood-plain maps are derived for this test site. A first map is built by applying an advanced deterministic approach: use of a fully two-dimensional finite element model (TELEMAC-2D), calibrated against a historical flood extent, to derive a 1-in-100 year flood inundation map. A second map is derived by using a probabilistic approach: use of a simple raster-based inundation model (LISFLOOD-FP) to derive an uncertain flood extent map predicting the 1-in-100 year event conditioned on the extent of the 2006 flood. The flood-plain maps are then compared and the advantages and disadvantages of the two different approaches are critically discussed.

Citation Di Baldassarre, G., Schumann, G., Bates, P. D., Freer, J. E. & Beven, K. J. (2010) Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrol. Sci. J. 55(3), 364–376.  相似文献   

6.
Book reviews     
Abstract

Statistical and deterministic modelling estimates of flood magnitudes and frequencies that can affect flood-plain ecology in the upper Ahuriri River catchment, a mountainous high country catchment in the New Zealand Southern Alps, were evaluated. Statistical analysis of 46 years of historical data showed that floods are best modelled by the generalized extreme value and lognormal distributions. We evaluated application of the HEC-HMS model to this environment by modelling flood events of various frequencies. Model results were validated and compared with the statistical estimates. The SCS curve number method was used for losses and runoff generation, and the model was very sensitive to curve number. The HEC-HMS flood estimates matched the statistical estimates reasonably well, and, over all return periods, were on average approximately 1% greater. However, the model generally underestimated flood peaks up to the 25-year event and overestimated magnitudes above this. The results compared well with other regional estimates, including studies based on L-moments, and showed that this catchment has smaller floods than other similarly-sized catchments in the Southern Alps.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Caruso, B.S., Rademaker, M., Balme, A., and Cochrane, T.A., 2013. Flood modelling in a high country mountain catchment, New Zealand: comparing statistical and deterministic model estimates for ecological flows. Hydrological Sciences Journal, 58 (2), 328–341.  相似文献   

7.
Abstract

River flow conditions in many watersheds of Iceland are particularly disturbed during winter by the formation, drifting and accumulation of river ice, whose impact on water encroachment and extent of inundations is not reflected in the discharge records. It is therefore necessary to use river discharge with great caution when assessing the magnitude of past inundations in Iceland, and to give attention to other flood magnitude parameters. A GIS-based methodology is presented that focuses on inundation extent as an alternative parameter for the assessment and ranking of the magnitude of past flooding events in the Ölfusá-Hvítá basin, known as one of the most dangerous flood-prone river complexes in Iceland. Relying ultimately on a macro-scale grid, the method enabled the reconstruction of the extent of inundations, the delineation of the flood plain, and, finally, some estimation of the likelihood of flooding of exposed areas that include marine submergences and river floods for both open water and ice conditions.

Citation Pagneux, E., Gísladóttir, G. & Snorrason, Á. (2010) Inundation extent as a key parameter for assessing the magnitude and return period of flooding events in southern Iceland. Hydrol. Sci. J. 55(5), 704–716.  相似文献   

8.
ABSTRACT

The conventional abrupt change-based assessments of climate- and human-induced impacts on streamflow require the existence of change point(s) and stationarity assumption. However, hydrological conditions may not change abruptly at a certain time, but rather evolve gradually over a period. We propose a trend-based time-varying approach that does not require these prerequisites to assess the climate- and human-induced impacts on hydrological conditions in the Pearl River Basin (PRB), China, which can be applied in other basins. The trend-based time-varying approach detects human activities exert a significant seasonal regulation on streamflow (i.e. 113% of the decreases in the wet season and 93% of the increases in the dry season) and 101% of the reductions in flood peaks in the East River Basin, the sub-basin with the highest ratio of total reservoir storage capacity to river discharge in the PRB. Climate change contributes to 77% of the increases in flood peaks in the West River Basin, a large sub-basin with lower flood control levels.  相似文献   

9.
Abstract

The flooding and drying mechanisms of the seasonal flood plains of the Sudd swamps in southern Sudan are, while dependent on the river levels, influenced by a complex interaction between soil, vegetation, topography and seasonal trends in rainfall and evapotranspiration. Based on field measurements, these components have been assessed in detail and evaluated regarding their function in the seasonal cycle of flooding and drying. A detailed analysis of soil and evapotranspiration conditions, as well as the interaction with vegetation and meteorological conditions, has been conducted using field and laboratory experiments. Sources, processes, flow directions and the fate of the floodwaters on both the river-fed seasonal flood plains and the rain-fed grasslands have been established. The results show that river spill is responsible for flooding these areas while no return flow occurs, and drying is caused by evapotranspiration. Rainfall can only cause temporary flooding in extreme events.

Citation Petersen, G. & Fohrer, N. (2010) Flooding and drying mechanisms of the seasonal Sudd flood plains along the Bahr el Jebel in southern Sudan. Hydrol. Sci. J. 55(1), 4–16.  相似文献   

10.
Abstract

In the current context of climatic variability, it is important to quantify the impact on the environment. This study deals with an analysis of climatic data and land-use changes in terms of the impacts on flood recurrence based on multisource data. The study area covers the mouth of the Saint-François River (southern Québec, Canada), where spring floods and ice jams are a recurring problem. The flood frequency analysis shows an increase in flooding over recent decades, attributable to an increase in winter temperatures that has the effect of causing ice jams earlier in the year. Regarding land-use changes, a small decrease in agricultural surface areas is observed, from 53% to 39%, along with increases in forest and urban surface areas from 27% to 38% (forest) and 3% to 5% (urban) between 1928 and 2005. In a context of continuing climate warming, more pronounced inter-annual variations are to be expected along with a higher incidence of flooding.

Editor Z.W. Kundzewicz

Citation Ouellet, C., Saint-Laurent, D. and Normand, F., 2012. Flood events and flood risk assessment in relation to climate and land-use changes: Saint-François River, southern Québec, Canada. Hydrological Sciences Journal, 57 (2), 313–325.  相似文献   

11.
E. Morin  H. Yakir 《水文科学杂志》2014,59(7):1353-1362
Abstract

t Spatio-temporal storm properties have a large impact on catchment hydrological response. The sensitivity of simulated flash floods to convective rain-cell characteristics is examined for an extreme storm event over a 94 km2 semi-arid catchment in southern Israel. High space–time resolution weather radar data were used to derive and model convective rain cells that then served as input into a hydrological model. Based on alterations of location, direction and speed of a major rain cell, identified as the flooding cell for this case, the impacts on catchment rainfall and generated flood were examined. Global sensitivity analysis was applied to identify the most important factors affecting the flash flood peak discharge at the catchment outlet. We found that the flood peak discharge could be increased three-fold by relatively small changes in rain-cell characteristics. We assessed that the maximum flash flood magnitude that this single rain cell can produce is 175 m3/s, and, taking into account the rest of the rain cells, the flash flood peak discharge can reach 260 m3/s.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Morin, E. and Yakir, H., 2013. Hydrological impact and potential flooding of convective rain cells in a semi-arid environment. Hydrological Sciences Journal, 59 (7), 1275–1284. http://dx.doi.org/10.1080/02626667.2013.841315  相似文献   

12.
Abstract

Flood hazard maps were developed using remote sensing (RS) data for the historical event of the 1988 flood with data of elevation height, and geological and physiographic divisions. Flood damage depends on the hydraulic factors which include characteristics of the flood such as the depth of flooding, rate of the rise in water level, propagation of a flood wave, duration and frequency of flooding, sediment load, and timing. In this study flood depth and “flood-affected frequency” within one flood event were considered for the evaluation of flood hazard assessment, where the depth and frequency of the flooding were assumed to be the major determinant in estimating the total damage function. Different combinations of thematic maps among physiography, geology, land cover and elevation were evaluated for flood hazard maps and a best combination for the event of the 1988 flood was proposed. Finally, the flood hazard map for Bangladesh and a flood risk map for the administrative districts of Bangladesh were proposed.  相似文献   

13.
Abstract

The magnitudes of the largest known floods of the River Rhine in Basel since 1268 were assessed using a hydraulic model drawing on a set of pre-instrumental evidence and daily hydrological measurements from 1808. The pre-instrumental evidence, consisting of flood marks and documentary data describing extreme events with the customary reference to specific landmarks, was “calibrated” by comparing it with the instrumental series for the overlapping period between the two categories of evidence (1808–1900). Summer (JJA) floods were particularly frequent in the century between 1651–1750, when precipitation was also high. Severe winter (DJF) floods have not occurred since the late 19th century despite a significant increase in winter precipitation. Six catastrophic events involving a runoff greater than 6000 m 3 s‐1 are documented prior to 1700. They were initiated by spells of torrential rainfall of up to 72 h (1480 event) and preceded by long periods of substantial precipitation that saturated the soils, and/or by abundant snowmelt. All except two (1999 and 2007) of the 43 identified severe events (SEs: defined as having runoff > 5000 and < 6000 m 3 s ‐1) occurred prior to 1877. Not a single SE is documented from 1877 to 1998. The intermediate 121-year-long “flood disaster gap” is unique over the period since 1268. The effect of river regulations (1714 for the River Kander; 1877 for the River Aare) and the building of reservoirs in the 20th century upon peak runoff were investigated using a one-dimensional hydraulic flood-routing model. Results show that anthropogenic effects only partially account for the “flood disaster gap” suggesting that variations in climate should also be taken into account in explaining these features.

Citation Wetter, O., Pfister, C., Weingartner, R., Luterbacher, J., Reist, T., & Trösch, J. (2011) The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol. Sci. J. 56(5), 733–758.  相似文献   

14.
Abstract

This work presents a method for calculating the contributions of sea-level rise and urban growth to flood risk in coastal flood plains. The method consists of hydraulic/hydrological, urban growth and flood-damage quantification modules. The hydraulic/hydrological module estimates peak annual flows to generate flood stages impacted by sea-level rise within flood plains. A model for urban growth predicts patterns of urbanization within flood plains over the period 2010–2050. The flood-damage quantification module merges flood maps and urbanization predictions to calculate the expected annual flood damage (EAFD) for given scenarios of sea-level rise. The method is illustrated with an application to the Tijuana River of southern California, USA, and northwestern Mexico, where the EAFD is predicted to increase by over US$100 million because of sea-level rise of 0.25–1.0 m and urban growth by the year 2050. It is shown that urbanization plays a principal role in increasing the EAFD in the study area for the range of sea-level rise considered.

Editor Z.W. Kundzewicz

Citation Garcia, E.S. and Loáiciga, H.A., 2013. Sea-level rise and flooding in coastal riverine flood plains. Hydrological Sciences Journal, 59 (1), 204–220.  相似文献   

15.
Abstract

This paper presents a viable approach for flood management strategy in a river basin based on the European Floods Directive. A reliable flood management plan has two components: (a) a proper flood management strategy, and (b) the determination of the flood-hazard areas. A method to evaluate the benefits of a flood warning system is presented herein, as well as a method to estimate the flood-hazard areas. Six factors were considered in order to estimate the spatial distribution of the hazardous areas: flow accumulation, slope, land use, rainfall intensity, geology and elevation. The study area was divided into five regions characterized by different degrees of flood hazard ranging from very low to very high. The produced map of flood-hazard areas identifies the areas and settlements at high risk of flooding. The proposed methodology can be applied to any river basin and here was applied to the Koiliaris River basin in Greece.

Citation Kourgialas, N. N. & Karatzas, G. P. (2011) Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrol. Sci. J. 56(2), 212–225.  相似文献   

16.
Abstract

This article presents a comparison between real-time discharges calculated by a flash-flood warning system and post-event flood peak estimates. The studied event occurred on 15 and 16 June 2010 at the Argens catchment located in the south of France. Real-time flood warnings were provided by the AIGA (Adaptation d’Information Géographique pour l’Alerte en Crue) warning system, which is based on a simple distributed hydrological model run at a 1-km2 resolution using radar rainfall information. The timing of the warnings (updated every 15 min) was compared to the observed flood impacts. Furthermore, “consolidated” flood peaks estimated by an intensive post-event survey were used to evaluate the AIGA-estimated peak discharges. The results indicated that the AIGA warnings clearly identified the most affected areas. However, the effective lead-time of the event detection was short, especially for fast-response catchments, because the current method does not take into account any rainfall forecast. The flood peak analysis showed a relatively good correspondence between AIGA- and field-estimated peak values, although some differences were due to the rainfall underestimation by the radar and rainfall–runoff model limitations.
Editor Z.W. Kundzewicz; Guest editor R.J. Moore

Citation Javelle, P., Demargne, J., Defrance, D., Pansu, J. and Arnaud, P., 2014. Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, 59 (7), 1390–1402. http://dx.doi.org/10.1080/02626667.2014.923970  相似文献   

17.
Abstract

The rating curve model (RCM) proposed by Moramarco and co-authors is modified here for flood forecasting purposes without using rainfall information. The RCM is a simple approach for discharge assessment at a river site of interest based on relating the local recorded stage and the remote discharge monitored at an upstream gauged river site located some distance away. The proposed RCM for real-time application (RCM-RT), involves only two parameters and can be used for river reaches where significant lateral flows occur. The forecast lead time depends on the mean wave travel time of the reach. The model is found to be accurate for a long reach of the Po River (northern Italy) and for two branches of the Tiber River (central Italy) characterized by different intermediate drainage areas and wave travel times. Moreover, the assessment of the forecast uncertainty coming from the model parameters is investigated by performing a Monte Carlo simulation. Finally, the model capability to accurately forecast the exceedence of fixed hydrometric thresholds is analysed.

Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

18.
Abstract

Seasonal design floods which consider information on seasonal variation are very important for reservoir operation and management. The seasonal design flood method currently used in China is based on seasonal maximum (SM) samples and assumes that the seasonal design frequency is equal to the annual design frequency. Since the return period associated with annual maximum floods is taken as the standard in China, the current seasonal design flood cannot satisfy flood prevention standards. A new seasonal design flood method, which considers dates of flood occurrence and magnitudes of the peaks (runoff), was proposed and established based on copula function. The mixed von Mises distribution was selected as marginal distribution of flood occurrence dates. The Pearson Type III and exponential distributions were selected as the marginal distribution of flood magnitude for annual maximum flood series and peak-over-threshold samples, respectively. The proposed method was applied at the Geheyan Reservoir, China, and then compared with the currently used seasonal design flood methods. The case study results show that the proposed method can satisfy the flood prevention standard, and provide more information about the flood occurrence probabilities in each sub-season. The results of economic analysis show that the proposed design flood method can enhance the floodwater utilization rate and give economic benefits without lowering the annual flood protection standard.

Citation Chen, L., Guo, S. L., Yan, B. W., Liu, P. & Fang, B. (2010) A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrol. Sci. J. 55(8), 1264–1280.  相似文献   

19.
Abstract

Floods from the middle part of the River Morava (eastern Czech Republic) are considered over the course of the past three centuries, the study being based on data derived from documentary evidence (1691–1880), measured peak water stages, Hk (1881–1920) and peak discharges, Qk (1916–2009), evaluated with respect to their N-year return period (HN and QN ). Changes in land use and water management (water reservoirs, channel modifications) are discussed, as are factors influencing runoff conditions in the Morava catchment. Decadal synthesis of flood series identifies the highest flood activity in the decades of 1911–1920 and 1961–1970 (11 floods each), 1831–1840, 1891–1900, 1901–1910 and 1931–1940 (10 floods each). Uncertainty in this series is related to some incompleteness of documentary data in the pre-1881 period. Very low flood frequency occurred in the 1990s–2000s, although the most disastrous floods were recorded in this particular period (July 1997 at Q 100 and March/April 2006 at Q 20Q 50). Changes in flood frequency correspond partly to long-term changes in temperature and precipitation patterns.

Citation Brázdil, R., ?ezní?ková, L., Valá?ek, H., Havlí?ek, M., Dobrovolný, P., Soukalová, E., ?ehánek, T. & Skokanová, H. (2011) Fluctuations of floods of the River Morava (Czech Republic) in the 1691–2009 period: interactions of natural and anthropogenic factors. Hydrol. Sci. J. 56(3), 468–485.  相似文献   

20.
Abstract

Event-based methods are used in flood estimation to obtain the entire flood hydrograph. Previously, such methods adopted in the UK have relied on pre-determined values of the input variables (e.g. rainfall and antecedent conditions) to a rainfall–runoff model, which is expected to result in an output flood of a particular return period. In contrast, this paper presents a method that allows all the input variables to take on values across the full range of their individual distributions. These values are then brought together in all possible combinations as input to an event-based rainfall–runoff model in a Monte Carlo simulation approach. Further, this simulation strategy produces a long string of events (on average 10 per year), where dependencies from one event to the next, as well as between different variables within a single event, are accounted for. Frequency analysis is then applied to the annual maximum peak flows and flow volumes.

Citation Svensson, C., Kjeldsen, T.R., and Jones, D.A., 2013. Flood frequency estimation using a joint probability approach within a Monte Carlo framework. Hydrological Sciences Journal, 58 (1), 1–20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号