首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

It is a known fact that some methods used in the calculation of aquifer coefficients for unconsolidated formations require the use of semilogarithmic and logarithmic papers and others need previously prepared tables. In this study some linear methods are considered for the determination of aquifer characteristics because of the greater possibilities these give for accurate drawing of the drawdown/time graph.  相似文献   

2.
Study on snowmelt runoff simulation in the Kaidu River basin   总被引:8,自引:0,他引:8  
Alpine snowmelt is an important generation mode for runoff in the source region of the Tarim River basin, which covers four subbasins characterized by large area, sparse gauge stations, mixed runoff supplied by snowmelt and rainfall, and remarkably spatially heterogeneous precipitation. Taking the Kaidu River basin as a research area, this study analyzes the influence of these characteristics on the variables and parameters of the Snow Runoff Model and discusses the corresponding determination strategy to improve the accuracy of snowmelt simulation and forecast. The results show that: (i) The temperature controls the overall tendency of simulated runoff and is dominant to simulation accuracy, as the measured daily mean temperature cannot represent the average level of the same elevation in the basin and that directly inputting it to model leads to inaccurate simulations. Based on the analysis of remote sensing snow maps and simulation results, it is reasonable to approximate the mean temperature with 0.5 time daily maximum temperature. (ii) For the conflict between the limited gauge sta-tion and remarkably spatial heterogeneity of rainfall, it is not realistic to compute rainfall for each elevation zone. After the measured rainfall is multiplied by a proper coefficient and adjusted with runoff coefficient for rainfall, the measured rainfall data can satisfy the model demands. (iii) Adjusting time lag according to the variation of snowmelt and rainfall position can improve the simulation precision of the flood peak process. (iv) Along with temperature, the rainfall increases but cannot be completely monitored by limited gauge stations, which results in precision deterioration.  相似文献   

3.
Reliable estimation of the volume and timing of snowmelt runoff is vital for water supply and flood forecasting in snow‐dominated regions. Snowmelt is often simulated using temperature‐index (TI) models due to their applicability in data‐sparse environments. Previous research has shown that a modified‐TI model, which uses a radiation‐derived proxy temperature instead of air temperature as its surrogate for available energy, can produce more accurate snow‐covered area (SCA) maps than a traditional TI model. However, it is unclear whether the improved SCA maps are associated with improved snow water equivalent (SWE) estimation across the watershed or improved snowmelt‐derived streamflow simulation. This paper evaluates whether a modified‐TI model produces better streamflow estimates than a TI model when they are used within a fully distributed hydrologic model. It further evaluates the performance of the two models when they are calibrated using either point SWE measurements or SCA maps. The Senator Beck Basin in Colorado is used as the study site because its surface is largely bedrock, which reduces the role of infiltration and emphasizes the role of the SWE pattern on streamflow generation. Streamflow is simulated using both models for 6 years. The modified‐TI model produces more accurate streamflow estimates (including flow volume and peak flow rate) than the TI model, likely because the modified‐TI model better reproduces the SWE pattern across the watershed. Both models also produce better performance when calibrated with SCA maps instead of point SWE data, likely because the SCA maps better constrain the space‐time pattern of SWE.  相似文献   

4.
Bruno Ambroise 《水文研究》2016,30(20):3560-3577
In the small Ringelbach research catchment, where studies on the water cycle components in a granitic mountainous environment have been conducted since 1976, the water‐saturated areas that are hydraulically connected to the outlet play a major role in the streamflow generation, as it is here that complex interactions between atmosphere, surface and ground waters take place. During baseflow recession periods, which may last several months between two groundwater recharge events, the atmospheric inputs of water and energy on these contributing areas only explain the streamflow fluctuations observed around the master recession curve, which defines the groundwater contribution: fluctuating above it in the case of precipitation input on these areas, below it in the case of evaporation output from these areas. Streamflow may therefore largely deviate from the master recession curve in the case of long, hot, dry spells. Detailed mapping has shown that their variable extent is well related to baseflow by a loglinear curve. On the other hand, a synthetic master recession curve, well fitted by a second‐order hyperbolic function, has been obtained from numerous pure recession periods. Both based on these two curves, a simple procedure and a simple model have been used to (i) validate the hypothesis that the connected saturated areas are the only permanent variable contributing areas and (ii) simulate the daily streamflow volumes over long baseflow recession periods by a water balance of the aquifer below these areas only. The storm runoff ratio for small to moderate rainfall events is indeed corresponding to the catchment saturated fraction at that time. The volume of daily streamflow oscillations is indeed corresponding to the evaporation at the potential rate from the saturated areas only. In both cases, streamflow naturally tends towards the master recession curve after the end of any atmospheric perturbation. Introducing these findings into TOPMODEL led to significantly improved simulation results during baseflow recession periods. The master recession curve may therefore be considered as a dynamic equilibrium curve. Together with the relationship between saturated extent and baseflow, it provides the main characteristics necessary to understand and model the interactions at this complex interface and the resulting daily streamflow variations during baseflow recession periods in this type of catchment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Verification of distributed hydrologic models is rare owing to the lack of spatially detailed field measurements and a common mismatch between the scale at which soil hydraulic properties are measured and the scale of a single modelling unit. In this study, two of the most commonly calibrated parameters, i.e. soil depth and the vertical distribution of lateral saturated hydraulic conductivity Ks, were eliminated by a spatially detailed soil characterization and results of a hillslope‐scale field experiment. The soil moisture routing (SMR) model, a geographic information system‐based hydrologic model, was modified to represent the dominant hydrologic processes for the Palouse region of northern Idaho. Modifications included Ks as a double exponential function of depth in a single soil layer, a snow accumulation and melt algorithm, and a simple relationship between storage and perched water depth (PWD) using the drainable porosity. The model was applied to a 2 ha catchment without calibration to measured data. Distributed responses were compared with observed PWD over a 3‐year period on a 10 m × 15 m grid. Integrated responses were compared with observed surface runoff at the catchment outlet. The modified SMR model simulated the PWD fluctuations remarkably well, especially considering the shallow soils in this catchment: a 0·20 m error in PWD is equivalent to only a 1·6% error in predicted soil moisture content. Simulations also captured PWD fluctuations during a year with high spatial variability of snow accumulation and snowmelt rates at upslope, mid‐slope, and toe slope positions with errors as low as 0·09 m, 0·12 m, and 0·12 m respectively. Errors in distributed and integrated model simulations were attributed mostly to misrepresentation of rain events and snowmelt timing problems. In one location in the catchment, simulated PWD was consistently greater than observed PWD, indicating a localized recharge zone, which was not identified by the soil morphological survey. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A theoretical, dimensionless rainfall–runoff model was used to simulate the discharge of Wulongdong spring in western Hubei province, South China. The single parameter (time constant τ) in the model is easy to obtain by fitting the recession rate of the observed hydrographs. The model was scaled by simply matching the total annual flow volume of the model to the observed value. Annual distribution of actual evapotranspiration was embedded in the model input to calculate the accumulated deficit of soil moisture before each rain event. Hourly precipitation input data performed better than daily data, defining τ of 0.85 days and returning a Nash–Sutcliffe efficiency of 0.89 and the root mean square error of 0.07. This model offers an effective way to simulate the discharge of karst springs that respond sensitively to rainfall events. The model parameters of a successful simulation can be used to estimate the recharge area and indicate the intrinsic response time of the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Theodore Chao Lim 《水文研究》2016,30(25):4799-4814
Many studies have empirically confirmed the relationship between urbanization and changes to the hydrologic cycle and degraded aquatic habitats. While much of the literature focuses on extent and configuration of impervious area as a causal determinant of degradation, in this article, I do not attribute causes of decreased watershed storage on impervious area a priori. Rather, adapting the concept of variable source area (VSA) and its relationship to incremental storage to the particular conditions of urbanized catchments, I develop a statistically robust linear regression‐based methodology to detect evidence of VSA‐dominant response. Using the physical and meteorological characteristics of the catchments as explanatory variables, I then use logistic regression to statistically analyze significant predictors of the VSA classification. I find that the strongest predictor of VSA‐type response is the percent of undeveloped area in the catchment. Characteristics of developed areas, including total impervious area, percent‐developed open space and the type of drainage infrastructure, do not add to the explanatory power of undeveloped land in predicting VSA‐type response. Within only developed areas, I find that total impervious area and percent‐developed open space both decrease the odds of a catchment exhibiting evidence of VSA‐type response and the effect of developed open space is more similar to that of total impervious area than undeveloped land in predicting VSA response. Different types of stormwater management infrastructure, including combined sewer systems and infiltration, retention and detention infrastructure are not found to have strong statistically significant effects on probability of VSA‐type response. VSA‐type response is also found to be stronger during the growing season than the dormant season. These findings are consistent across a national cross‐section of urbanized watersheds, a higher resolution dataset of Baltimore Metropolitan Area watersheds and a subsample of watersheds confirmed not to be served by (combined sewer systems). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In the recent past, a variety of statistical and other modelling approaches have been developed to capture the properties of hydrological time series for their reliable prediction. However, the extent of complexity hinders the applicability of such traditional models in many cases. Kernel‐based machine learning approaches have been found to be more popular due to their inherent advantages over traditional modelling techniques including artificial neural networks(ANNs ). In this paper, a kernel‐based learning approach is investigated for its suitability to capture the monthly variation of streamflow time series. Its performance is compared with that of the traditional approaches. Support vector machines (SVMs) are one such kernel‐based algorithm that has given promising results in hydrology and associated areas. In this paper, the application of SVMs to regression problems, known as support vector regression (SVR), is presented to predict the monthly streamflow of the Mahanadi River in the state of Orissa, India. The results obtained are compared against the results derived from the traditional Box–Jenkins approach. While the correlation coefficient between the observed and predicted streamflows was found to be 0·77 in case of SVR, the same for different auto‐regressive integrated moving average (ARIMA) models ranges between 0·67 and 0·69. The superiority of SVR as compared to traditional Box‐Jenkins approach is also explained through the feature space representation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Monitoring the change of snow-covered area (SCA) in a basin is vitally important for optimum operation of water resources, where the main contribution comes from snowmelt. A methodology for obtaining the depletion pattern of SCA, which is based on satellite image observations where mean daily air temperature is used, is applied for the 1997 water year and tested for the 1998 water year. The study is performed at the Upper Euphrates River basin in Turkey (10 216 km2). The major melting period in this basin starts in early April. The cumulated mean daily air temperature (CMAT) is correlated to the depletion of snow-covered area with the start of melting. The analysis revealed that SCA values obtained from NOAA-AVHRR satellite images are exponentially correlated to CMAT for the whole basin in a lumped manner, where R 2 values of 0.98 and 0.99 were obtained for the water years 1997 and 1998, respectively. The applied methodology enables the interpolation between the SCA observations and extrapolation. Such a procedure reduces the number of satellite images required for analysis and provides solution for the cloud-obscured images. Based on the image availability, the effect of the number of images on the quality of snowmelt runoff simulations is also discussed. In deriving the depletion curve for SCA, if the number of images is reduced, the timing of image analysis within the snowmelt period is found very important. Analysis of the timing of satellite images indicated that images from the early and middle parts of the melt period are more important.  相似文献   

10.
亚洲-太平洋涛动是北半球夏季亚洲大陆和北太平洋副热带地区对流层中高层扰动温度场上大尺度的东西反相的遥相关现象,其异常变化与亚洲-太平洋地区夏季风气候有着密切的联系.基于欧洲中心的ERA-40再分析资料和国家气候中心BCC_CSM1.1(m)气候系统模式多年的数值模拟结果,本文主要评估了BCC_CSM1.1(m)模式对于夏季亚洲-太平洋涛动的空间分布、指数的时间演变及与其变化所对应的亚洲地区夏季环流异常等方面的模拟能力,结果表明:BCC_CSM1.1(m)模式能够较好地模拟出北半球夏季对流层中高层扰动温度在亚-太地区中纬度存在的西高东低"跷跷板"现象;模式能够模拟出夏季亚洲-太平洋涛动指数的年际变率,但是不能模拟出该指数在20世纪60-70年代明显下降的年代际趋势;模式还能较好地模拟出亚洲-太平洋涛动高低指数年亚洲-太平洋地区夏季环流的异常:指数偏高年份,南亚高压增强,高空西风急流带和热带东风急流均加强,索马里越赤道气流增强,南亚热带季风和东亚副热带季风均增强,东亚季风低压槽加强,西北太平洋副热带高压增强,南亚和东亚北部降水增加,菲律宾地区、中国长江流域-朝鲜半岛-日本一带地区降水减少,反之亦然.  相似文献   

11.
气候变化对沅江流域径流影响研究   总被引:1,自引:0,他引:1  
陈喜  苏布达  姜彤  施雅风 《湖泊科学》2003,15(Z1):115-122
温室气体排放量增加造成气候变化,对全球资源环境产生重要影响.本文在水量平衡基础上,建立考虑气象要素和地形变化的月水文模型,利用实测径流资料对模型在时空尺度上进行验证.利用全球气候模型(GCMs)预测的未来气候变化情形,对处于湿润区的沅江流域径流过程进行预测.分析结果表明,该区域径流过程对降雨和气温变化十分敏感.根据英国Hadcm2模型对本世纪中叶气候变化预测结果,沅江流域未来年降雨量减少0.43%气温升高1.55℃,丰水期降雨增加,而枯水期将有较大幅度减少.年径流量相应减少6.8%,丰水期径流量增大11%,枯水期径流减少47%,不利于防洪和水资源开发利用.  相似文献   

12.
ABSTRACT

A new physics-based rainfall–runoff method of the Soil and Water Assessment Tool (SWAT) was developed, which integrates a water balance (WB) approach with the variable source area (WB-VSA). This approach was further compared with four methods—soil-water-dependent curve number (CN-Soil), evaporation-dependent curve number (CN-ET), Green and Ampt equation (G&A) and WB—in a monsoonal watershed, Eastern China. The regional sensitivity analysis shows that volumetric efficiency coefficient (VE) with river discharges is sensitive to the most parameters of all approaches. The results of model calibration against VE demonstrate that WB-VSA is the most accurate owing to its reflection of the spatial variation of runoff generation as affected by topography and soil properties. Other methods can also mimic baseflow well, but the G&A and CN-ET simulate floods much worse than the saturation excess runoff approaches (WB-VSA, WB and CN-Soil). Meanwhile, CN-Soil as an empirical method fails to simulate groundwater levels. By contrast, WB-VSA captures them best.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

13.
调频液体阻尼器(TLD)的等效力学模型研究   总被引:5,自引:0,他引:5  
本文根据流体力学理论,建立了圆柱形TLD中晃动液体的势流场,并从液体晃动的动力效应等效原则出发,导出了晃动液体的等效力学模型,并阐明其适用范围。文量计算的结果表明,在工程应用中,仅用TLD的一阶晃动等效力学模型就能满足工程需要。  相似文献   

14.
To improve understanding of DOC dynamics in seasonal Mediterranean environments, rainfall, soil water, groundwater and stream water samples were taken during a 27-month period in the Can Vila catchment (northeast Spain). Using these data, we characterized DOC dynamics in the different hydrological compartments and analysed the factors affecting them. We also analysed DOC dynamics during storm events and the factors that control DOC delivery to the stream. The results show some seasonality in rainwater and soil water DOC concentrations, while no clear seasonality was observed in stream water and groundwater, where DOC dynamics were strongly related to discharge and water table variations. For storm events with several discharge peaks, the slope of the discharge–DOC concentration relationship was higher for the first peak. The rather similar dynamics of stream water DOC concentration in all floods contrast with the observed diversity of hydrological processes. This raises the question of the origin of the observed rapid DOC increase.
EDITOR M.C. Acreman

ASSOCIATE EDITOR K. Heal  相似文献   

15.
摄食栖息地面积是反映越冬水鸟生存空间的直接指标,三峡水库运行后洞庭湖枯水期水文节律出现新的变化,给越冬水鸟摄食栖息地造成的影响尚不明确.为定量描述三峡水库枯水期不同出库流量对洞庭湖越冬水鸟摄食栖息地的影响,以洞庭湖典型的珍稀越冬水鸟——白鹤(Grus leucogeranus)为指示性候鸟,以白鹤摄食对栖息地水深需求作为关键生态因子,建立白鹤摄食对水深需求的栖息地适宜度模型.构建涵盖长江干流、三口河系、洞庭湖及其四水尾闾河段的江湖一体化耦合水动力模型,实现栖息地水动力分布特征的精确模拟.在此基础上耦合栖息地适宜度模型和水动力模型,建立了面向白鹤摄食对三峡水库出库流量需求的物理栖息地模型,量化不同出库流量对应的白鹤摄食栖息地加权可利用面积,定量分析水库运行对白鹤摄食栖息地面积的影响.结果表明:1月中旬三峡水库不同出库流量下洞庭湖白鹤潜在摄食栖息地面积保持稳定并随出库流量的增加呈增大趋势,维持在101.40~121.84 km2之间,其中东洞庭湖摄食栖息地面积在7.49~9.86 km2之间,南洞庭湖(含横岭湖)摄食栖息地面积在47.37~60.34 km2之间,西洞庭湖摄食栖息地面积在46.54~51.64 km2之间.不同湖区摄食栖息地面积随着三峡水库出库流量的增加均呈增大的趋势,说明三峡水库枯水期补水调度对于维持栖息地面积具有重要作用.较三峡水库运行前相比,白鹤摄食栖息地面积最大增加20.44 km2,对应的增幅为20.16%.成果明晰了三峡水库运行对洞庭湖白鹤摄食栖息地面积的影响规律,可为通过三峡水库补水调度改善洞庭湖越冬水鸟摄食栖息地生境提供理论基础.  相似文献   

16.
《水文科学杂志》2013,58(6):1176-1193
Abstract

Flat areas are a critical issue for the characterization of drainage patterns using digital elevation models (DEM). In this work, flat area removal and flow direction algorithms are implemented, and also a physically-based DEM correction model is introduced, for investigating their influence on the topological properties of the channel network, the Hortonian parameters and the hillslope width function. Differences of results, as compared to the standard procedures implemented in widely-used GIS-based hydrological packages, show the importance for hydrogeomorphic modellers to consider the use of more detailed approaches.  相似文献   

17.
枯水期咸潮入侵已经严重威胁到了感潮河流区域供水安全.本文通过构建避咸蓄淡供水模型,耦合了咸度预测、河库联合供水调度和供水安全分析模块,为依赖感潮河流为水源地的区域供水安全管理提供了一种整体思路和决策方法.以面向粤港澳大湾区珠海东部及澳门的珠江三角洲磨刀门水道取供水为例,基于潮汐、径流和风等因子及咸度实测数据,较好地拟合了基于BP神经网络的咸度预测模型,及含氯度与超标时间的曲线函数,建立了上游来水和咸度超标时间之间的联系,得到了避咸蓄淡取水时机.咸度预测与当地河库联合供水调度相结合,得到了上游枯水期来水过程的当地区域供需平衡状况.枯水期不考虑水库调蓄的资源性缺水临界需水量为3.22亿m3,水库参与调蓄的工程性缺水临界需水量为3.75亿m3.通过供水安全分析模块,基于设定的风险阈值和临界阈值识别出了不同需水规模的上游来水临界流量特征.对于当地规划的需水规模4.23亿m3,期望上游枯水期临界流量均值约为3372 m3/s.整体上来说,需水规模越大,对上游来水期望的临界流量越大,但同时还与枯水期流量分布有关.  相似文献   

18.
现代地裂缝在世界许多国家普遍存在 ,已成为当今世界范围内的主要地质灾害之一。本文在详尽分析了山西榆次地裂缝的各个致灾因子的基础上 ,利用GIS技术建立了地质学意义上的专题层 ;然后采用人工神经网络技术构建出了地裂缝灾害活动性的评价模型 ,并建立了地裂缝活动性的评价系统 ,对榆次地裂缝进行了灾害活动性评价 ,为榆次市城建和国土规划等部门的正确决策提供了重要的科学依据  相似文献   

19.
ABSTRACT

A model fusion approach was developed based on five artificial neural networks (ANNs) and MODIS products. Static and dynamic ANNs – the multi-layer perceptron (MLP) with one and two hidden layers, general regression neural network (GRNN), radial basis function (RBF) and nonlinear autoregressive network with exogenous inputs (NARX) – were used to predict the monthly reservoir inflow in Mollasadra Dam, Fars Province, Iran. Leaf area index and snow cover from MODIS, and rainfall and runoff data were used to identify eight different combinations to train the models. Statistical error indices and the Borda count method were used to verify and rank the identified combinations. The best results for individual ANNs were combined with MODIS products in a fusion model. The results show that using MODIS products increased the accuracy of predictions, with the MLP with two hidden layers giving the best performance. Also, the fusion model was found to be superior to the best individual ANNs.  相似文献   

20.
杭州西湖总磷动态变化预测   总被引:1,自引:1,他引:1  
建立了西湖污染物分析和浓度变化的水质对流扩散模型,并利用该模型对西湖水体引水后7d内总磷浓度的变化进行了预测,然后对预测结果作了较为详细的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号