首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Principal component analysis (PCA) was applied to hydrochemical and isotopic data of 34 groundwater samples. This allowed the reduction of 20 variables to four significant PCs that explain 81.9% of the total variance; F1 (47.1%) explains the groundwater mineralization, whereas F2 (17%) shows isotopic enrichment and nitrate pollution. Based on an iso-factor scores map of F1, three water zones were delineated: Zone A (F1 < ?1), with fresh groundwater from the unconfined aquifer; Zone B (1 > F1 > ?1), with moderate mineralization from the confined–unconfined aquifer boundary; and Zone C (F1 > 1), with the most mineralized hot water from the confined aquifer. The iso-factor scores map of F2 delineates positive values representing samples from the unconfined aquifer, with freshwater and nitrate contamination associated with stable isotope enrichment, whereas negative values represent samples from the confined aquifer. The results clearly demonstrate the usefulness of PCA in groundwater hydrochemistry investigations.  相似文献   

2.
A combination of stable isotopes (18O and 2H) and hydrochemistry has been applied to investigate storage processes in relation to aquifer storage and recovery (ASR) of the shallow alluvial Quaternary aquifer in Damascus basin. The stored water, entirely taken from the Figeh springs during flood periods, was injected in a single well having a brackish groundwater. Water samples were collected from four observation wells drilled in the Damascus University Campus (DUC) site during a 3‐year period (2006–2008). The injectant water, which deviates in its chemical and isotopic signatures from that of the ambient groundwater, shows that the stored water plume remains within close proximity to the injection well (IW) (<≈ 100 m). Thus, only two wells (W13 and W14) located at a distance less than 80 m from the injection point were affected by this injection. The observation wells located at longer distances from the IW (≈145 m and ≈ 600 m for wells W15 and WHz, respectively) were completely unaffected by the injection. Although most of the chemical and isotopic parameters usefully reflected the mixing process that occurs between the injectant water and ambient groundwater, the stable isotope (18O) and chloride (Cl) were the most sensitive parameters that quickly reflect this signature. Using a simple mass balance, the calculated proportion of injectant water reaching the well W13 was in the range of 50–90%. This proportion was even lower (30–55%) in the case of well W14. Although the drought event prevailing during this study did not much help to inject further amounts of water, higher than the injected volume (0·2416 M m3) and also not favourable to better evaluate the fate and subsurface hydrological processes, these findings offer encouragement to continue the ASR activities, as an alternative way for better management of water resources in this basin facing intensive problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
We used hydrochemistry and environmental isotope data (δ18O, δD, tritium, and 14C) to investigate the characteristics of river water, groundwater, and groundwater recharge in China's Heihe River basin. The river water and groundwater could be characterized as Ca2+? Mg2+? HCO3?? SO42? and Na+? Mg2+? SO42?? Cl? types, respectively. Hydrogeochemical modelling using PHREEQC software revealed that the main hydrogeochemical processes are dissolution (except for gypsum and anhydrite) along groundwater flow paths from the upper to middle Heihe reaches. Towards the lower reaches, dolomite and calcite tend to precipitate. The isotopic data for most of the river water and groundwater lie on the global meteoric water line (GMWL) or between the GMWL and the meteoric water line in northwestern China, indicating weak evaporation. No direct relationship existed between recharge and discharge of groundwater in the middle and lower reaches based on the isotope ratios, d‐excess, and 14C values. On the basis of tritium in precipitation and by adopting an exponential piston‐flow model, we evaluated the mean residence time of shallow groundwater with high tritium activities, which was around 50 years (a). Furthermore, based on the several popular models, it is calculated that the deep groundwaters in piedmont alluvial fan zone of the middle reaches and in southern part of the lower reaches are modern water, whereas the deep groundwaters in the edge of the middle reaches and around Juyan Lake in the lower reaches of Heihe river basin are old water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Jamal Asfahani 《水文研究》2007,21(21):2934-2943
Twenty‐nine Schlumberger electrical soundings were carried out in the Salamiyeh region in Syria using a maximum current electrode separation of 1 km. Three soundings were made at existing boreholes for comparison. Aquifer parameters of hydraulic conductivity and transmissivity were obtained by analysing pumping test data from the existing boreholes. An empirical relationship between hydraulic conductivity determined from the pumping test and both resistivity and thickness of the Neogene aquifer has been established for these boreholes in order to calculate the geophysical hydraulic conductivity. A close agreement has been obtained between the computed hydraulic conductivity and that determined from the pumping test. The relationship established has, therefore, been generalized in the study area in order to evaluate hydraulic conductivity and transmissivity at all the points where geoelectrical measurements have been carried out. This generalization allows one to derive maps of the hydraulic conductivity and transmissivity in the study area based on geoelectrical measurements. These maps are important in future modelling processes oriented towards better exploitation of the aquifers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
B. Abou Zakhem  R. Hafez 《水文研究》2010,24(18):2641-2654
The chemical and isotopic composition of monthly composite rain samples collected at 13 meteoric stations in Syria during two hydrological cycles from 1991 to 1993 have been measured. The chemical analysis of the samples revealed at a number of stations pollution due to industry and sand storms. The temporal and spatial variation of the isotopic composition has been found to be comparable with one of the neighbouring countries such as Jordan and others. The average weighted oxygen‐18 and deuterium values are − 7·5 and − 39·11‰, respectively, and the deuterium excess is 21‰ . The individual isotope values can be divided into two groups. One group is represented by winter precipitation and fits closely the Mediterranean Meteorological Water Line (MMWL). Thus, for winter precipitation, condensation of Mediterranean water vapour appears to be the dominating isotope fractionation process. The other group represents spring precipitation and is spread along an evaporation line below the MMWL, thus indicating the influence of sub‐cloud evaporation. The d‐excess has been found to be lower in the north of Syria (19·9‰ at Tartous, 18·1‰ at Jarablous) than in the south of the country (23·4‰ at Sweida, 24·1‰ at Izra) where Mediterranean air mass dominates. The d‐excess of precipitation in neighbouring countries is also close to the average value of the eastern Mediterranean basin of 22‰ , e.g. for Jordan the value is 23‰ , which signifies that Mediterranean water vapour is, for all these countries, the dominant source of precipitation. The tritium content of precipitation was found to increase with distance from the coast (5·3 TU at coastal station Tartous, 8·8 TU at continental station Palmyra). Low tritium content and high d‐excess at coastal stations clearly indicate a Mediterranean air moisture source. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Artificially enhancing recharge rate into groundwater aquifer at specially designed facilities is an attractive option for increasing the storage capacity of potable water in arid and semi‐arid region such as Damascus basin (Syria). Two dug wells (I and II) for water injection and 24 wells for water extraction are available in Mazraha station for artificial recharge experiment. Chemical and stable isotopes (δ2H and δ18O) were used to evaluate artificial recharge efficiency. 400 to 500*103 m3 of spring water were injected annually into the ambient shallow groundwater in Mazraha station, which is used later for drinking purpose. Ambient groundwater and injected spring water are calcium bicarbonate type with EC about 880 ± 60 μS/cm and 300 ± 50 μS/cm, respectively. The injected water is under saturated versus calcite and the ambient groundwater is over saturated, while the recovered water is near equilibrium. It was observed that the injection process formed a chemical dilution plume that improves the groundwater quality. Results demonstrate that the hydraulic conductivity of the aquifer is estimated around 6.8*10?4 m/s. The effective diameter of artificial recharge is limited to about 250 m from the injection wells. Mixing rate of 30% is required in order to reduce nitrate concentration below 50 mg/l which is considered the maximum concentration limit for potable water. Deuterium and oxygen‐18 relationship demonstrates that mixing line between injected water and ambient groundwater has a slope of 6.1. Oxygen‐18 and Cl? plot indicates that groundwater salinity origin is from mixing process, and no dissolution and evaporation were observed. These results demonstrate the efficiency of the artificial recharge experiments to restore groundwater storage capacity and to improve the water quality. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
8.

潮汕坳陷MZ-1井揭示的中生界为深入分析南海北部晚中生代的构造演化提供了关键性的资料.基于MZ-1井的标定,开展了系统的地震剖面构造-地层解释,在中生代地层内识别出Tm30区域性不整合面,同位素定年确定该界面发育于早白垩世末至晚白垩世初,落实了潮汕坳陷上白垩统的分布.此外,在研究区西南部识别出大型的兴宁—东沙逆冲推覆带,主要由多条NW—SE向延伸、西倾的叠瓦状逆冲断层及其伴生的不对称褶皱组成,其明显控制了上白垩统厚度分布.由此可见,上白垩统构造层不具有张裂盆地的典型特征,因此南海北部主动陆缘向被动陆缘的转换不会早于晚白垩世末.研究认为,在南海地区特提斯残留洋盆关闭的总背景下,在约80 Ma时期,南海地块与华南陆块强烈碰撞挤压,在靠近碰撞带处的礼乐滩、潮汕坳陷西南部形成褶皱冲断构造体系,进而控制了潮汕坳陷晚白垩世周缘前陆盆地的发育.

  相似文献   

9.
In the Manas River basin (MRB), groundwater salinization has become a major concern, impeding groundwater use considerably. Isotopic and hydrogeochemical characteristics of 73 groundwater and 11 surface water samples from the basin were analysed to determine the salinization process and potential sources of salinity. Groundwater salinity ranged from 0.2 to 11.91 g/L, and high salinities were generally located in the discharge area, arable land irrigated by groundwater, and depression cone area. The quantitative contributions of the evaporation effect were calculated, and the various groundwater contributions of transpiration, mineral dissolution, and agricultural irrigation were identified using hydrogeochemical diagrams and δD and δ18O compositions of the groundwater and surface water samples. The average evaporation contribution ratios to salinity were 5.87% and 32.7% in groundwater and surface water, respectively. From the piedmont plain to the desert plain, the average groundwater loss by evaporation increased from 7% to 29%. However, the increases in salinity by evaporation were small according to the deuterium excess signals. Mineral dissolution, transpiration, and agricultural irrigation activities were the major causes of groundwater salinization. Isotopic information revealed that river leakage quickly infiltrated into aquifers in the piedmont area with weak evaporation effects. The recharge water interacted with the sediments and dissolved minerals and subsequently increased the salinity along the flow path. In the irrigation land, shallow groundwater salinity and Cl? concentrations increased but not δ18O, suggesting that both the leaching of soil salts due to irrigation and transpiration effect dominated in controlling the hydrogeochemistry. Depleted δ18O and high Cl? concentrations in the middle and deep groundwater revealed the combined effects of mixing with paleo‐water and mineral dissolution with a long residence time. These results could contribute to the management of groundwater sources and future utilization programs in the MRB and similar areas.  相似文献   

10.
Abstract

Accurate estimation of groundwater recharge is essential for the proper management of aquifers. A study of water isotope (δ2H, δ18O) depth profiles was carried out to estimate groundwater recharge in the Densu River basin in Ghana, at three chosen observation sites that differ in their altitude, geology, climate and vegetation. Water isotopes and water contents were analysed with depth to determine water flow in the unsaturated zone. The measured data showed isotope enrichment in the pore water near the soil surface due to evaporation. Seasonal variations in the isotope signal of the pore water were also observed to a depth of 2.75 m. Below that depth, the seasonal variation of the isotope signal was attenuated due to diffusion/dispersion and low water flow velocities. Groundwater recharge rates were determined by numerical modelling of the unsaturated water flow and water isotope transport. Different groundwater recharge rates were computed at the three observation sites and were found to vary between 94 and 182 mm/year (± max. 7%). Further, the approximate peak-shift method was applied to give information about groundwater recharge rates. Although this simple method neglects variations in flow conditions and only considers advective transport, it yielded mean groundwater recharge rates of 110–250 mm/year (± max. 30%), which were in the same order of magnitude as computed numerical modelling values. Integrating these site-specific groundwater recharge rates to the whole catchment indicates that more water is potentially renewed than consumed nowadays. With increases in population and irrigation, more clean water is required, and knowledge about groundwater recharge rates – essential for improving the groundwater management in the Densu River basin – can be easily obtained by measuring water isotope depth profiles and applying a simple peak-shift approach.

Citation Adomako, D., Maloszewski, P., Stumpp, C., Osae, S. & Akiti, T. T. (2010) Estimating groundwater recharge from water isotope (δ2H, δ18O) depth profiles in the Densu River basin, Ghana. Hydrol. Sci. J. 55(8), 1405–1416.  相似文献   

11.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

12.
Abstract

Groundwater of the Tertiary-Quaternary Formations in the Jeloula basin (Central Tunisia), together with rain and surface waters, were analysed to investigate the mineralization processes, the origin of the water and its recharge sources. The water samples present a large spatial variability of chemical facies which is related to their interaction with the geological formations. The main sources of the water mineralization are the dissolution of evaporitic and carbonate minerals and cation exchange reactions. Stable isotopes indicate that most groundwater samples originate from infiltration of modern precipitation. Surface water samples from small dam reservoirs show a 18O/2H enrichment, which is typical of water exposed to open-surface evaporation in a semi-arid region. Considerable data of 3H and 14C allow the qualitative identification of the present-day recharge that is probably supplied by infiltration of recent flood waters in the Wadi El Hamra valley, and by direct infiltration of meteoric water through the local carbonate outcrops.

Editor D. Koutsoyiannis; Associate editor S. Faye  相似文献   

13.
The use of the sulphate mass balance (SMB) between precipitation and soil water as a supplementary method to estimate the diffuse recharge rate assumes that the sulphate in soil water originated entirely from atmospheric deposition; however, the origin of sulphate in soil and groundwater is often unclear, especially in loess aquifers. This study analysed the sulphur (δ34S-SO4) and oxygen (δ18O-SO4) isotopes of sulphate in precipitation, water-extractable soil water, and shallow groundwater samples and used these data along with hydrochemical data to determine the sources of sulphate in the thick unsaturated zone and groundwater of a loess aquifer. The results suggest that sulphate in groundwater mainly originated from old precipitation. When precipitation percolates through the unsaturated zone to recharge groundwater, sulphates were rarely dissolved due to the formation of CaCO3 film on the surface of sulphate minerals. The water-extractable sulphate in the deep unsaturated zone (>10 m) was mainly derived from the dissolution of evaporite minerals and there was no oxidation of sulphide minerals during the extraction of soil water by elutriating soil samples with deionized water. The water-extractable concentration of SO4 was not representative of the actual SO4 concentration in mobile soil water. Therefore, the recharge rate cannot be estimated by the SMB method using the water-extractable concentration of SO4 in the loess areas. This study is important for identifying sulphate sources and clarifying the proper method for estimating the recharge rate in loess aquifers.  相似文献   

14.
Abstract

The paper discusses aspects of the isotopic composition (tritium and stable isotopes) of precipitation, which was monitored from 2000 to 2003 at 12 stations in Syria. The seasonal variations in δ18O are smaller at the western stations than at the eastern ones due to low seasonal temperature variations. A good correlation between δ2H and δ18O was obtained for each station, and the slopes of the local meteoric water lines are significantly lower than the Global Meteoric Water Line. Values of d-excess decrease from 19‰ at the western stations to 13‰ at the eastern ones, indicating the influence of precipitation generated by air masses coming from the Mediterranean Sea. A reliable altitude effect represented by depletion of heavy stable isotopes (δ18O and δ2H), of about??0.21‰ and??1.47‰ per 100 m elevation, respectively, was observed. Monthly tritium contents in precipitation, and seasonal variations, are less at the western stations than at the eastern ones. The weighted mean tritium values are between 3 and 9 TU, and increase with distance from the Syrian coast by 1 TU/100 km.

Citation Al Charideh, A. R. & Abou Zakhem, B. (2010) Distribution of tritium and stable isotopes in precipitation in Syria. Hydrol. Sci. J. 55(5), 832–843.  相似文献   

15.
The objective of this work was to characterize and understand the origin of the water losses problem in the Afamia B dam located at Al-Ghab basin in Syria. The survey involved various geophysical methods including a superficial electromagnetic (EM), an electrical sounding (ES) and electrical resistivity tomography (ERT). Special considerations were focused on the lake of the dam, which is currently suffering serious water infiltration and leakage through its bedrocks. The application of the ERT technique was more effective and convenient. The analysis of the integrated results of the above mentioned methods revealed a vertical serious leakage which could take place in certain locations via fractures and faults that hit the main valley and pass through the dam lake. Additionally, the presence of an alternating lithological heterogeneity between permeable and impermeable layers may lead to infiltration through the geological formations of the basin. These processes are most likely causing hydraulic connections between the Neogene superficial deposits and the underlying Cretaceous fractured and karstified carbonates rocks. Consequently, such hydraulic connections may lead to water losses and leakage throughout the dam basin. Eventually, the presence of tens of drilled wells which penetrate the Neogene and Cretaceous formations, and the existence of numerous archeological graves and subsurface tunnels complicate the situation in the study area and cause more water leakage.  相似文献   

16.
The geochemical backgrounds and origins of soil gases in the Yanhuai basin are discussed based on the regional seismogeological data and concentrations of Rn,Hg,CO2,H2,He and CH4 in soil gas measured at 422 investigating sites in field during September to October 2007.The geochemical background values of Rn,Hg,CO2,H2,He and CH4 are(8105.8±5937.4) Bq/m3,(9.7±5.8) ng/m3,(395.9±35.3)×10-6,(4.0±2.3)×10-6,(15.9±10.4)×10-6 and(12.7±8.1)×10-6,respectively.The geochemical backgrounds of the soil gases are higher in...  相似文献   

17.
The geochemical backgrounds and origins of soil gases in the Yanhuai basin are discussed based on the regional seismogeological data and concentrations of Rn, Hg, CO&lt;sub&lt;2&lt;/sub&lt;, H&lt;sub&lt;2&lt;/sub&lt;, He and CH&lt;sub&lt;4&lt;/sub&lt; in soil gas measured at 422 investigating sites in field during September to October 2007. The geochemical background values of Rn, Hg, CO&lt;sub&lt;2&lt;/sub&lt;, H&lt;sub&lt;2&lt;/sub&lt;, He and CH&lt;sub&lt;4&lt;/sub&lt; are (8105.8?±5937.4) Bq/m&lt;sup&lt;3&lt;/sup&lt;, (9.7?±5.8) ng/m&lt;sup&lt;3&lt;/sup&lt;, (395.9?±35.3)?×10&lt;sup&lt;?6&lt;/sup&lt;, (4.0?±2.3)?×10&lt;sup&lt;?6&lt;/sup&lt;, (15.9?±10.4)×?10&lt;sup&lt;?6&lt;/sup&lt; and (12.7?±8.1)?×10&lt;sup&lt;?6&lt;/sup&lt;, respectively. The geochemical backgrounds of the soil gases are higher in the eastern part of the Yanhuai basin. The main factors affecting the gasgeochemical backgrounds are gaseous origins, structure of the crust, faults, stratum and microbe activity. The higher values of gasgeochemical backgrounds in the eastern part are attributed to the existence of low-velocity zones in the upper crust, stronger tectonic activity and more contributions of Hg and He derived from the deep-earth and Rn originated from granite, corresponding to stronger seismic activity. The results can be applied to identifying seismic precursor from monitoring data of gases in the studied area.  相似文献   

18.
δ87Sr values and Ca/Sr ratios were employed to quantify solute inputs from atmospheric and lithogenic sources to a catchment in NW Germany. The aquifer consists primarily of unconsolidated Pleistocene eolian and fluviatile deposits predominated by >90% quartz sand. Accessory minerals include feldspar, glauconite, and mica, as well as disperse calcium carbonate in deeper levels. Decalcification of near-surface sediment induces groundwater pH values up to 4.4 that lead to enhanced silicate weathering. Consequently, low mineralized Ca–Na–Cl- and Ca–Cl-groundwater types are common in shallow depths, while in deeper located calcareous sediment Ca–HCO3-type groundwater prevails. δ87Sr values and Ca/Sr ratios of the dissolved pool range from 7.3 to −2.6 and 88 to 493, respectively. Positive δ87Sr values and low Ca/Sr ratios indicate enhanced feldspar dissolution in shallow depths of less than 20 m below soil surface (BSS), while equilibrium with calcite governs negative δ87Sr values and elevated Ca/Sr ratios in deep groundwater (>30 m BSS). Both positive and negative δ87Sr values are evolved in intermediate depths (20–30 m BSS). For groundwater that is undersaturated with respect to calcite, atmospheric supplies range from 4% to 20%, while feldspar-weathering accounts for 8–26% and calcium carbonate for 62–90% of dissolved Sr2+. In contrast, more than 95% of Sr2+ is derived by calcium carbonate and less than 5% by feldspar dissolution in Ca–HCO3-type groundwater. The surprisingly high content of carbonate-derived Sr2+ in groundwater of the decalcified portion of the aquifer may account for considerable contributions from Ca-containing fertilizers. Complementary tritium analyses show that equilibrium with calcite is restricted to old groundwater sources.  相似文献   

19.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
研究区位于华北克拉通北缘东段吉林省南部靖宇县龙岗火山区(吴福元等,2014),距敦化—密山深大断裂东南侧约50 km.研究区内出露地层主要为第四纪粗面玄武岩及太古界花岗质片麻岩类,前寒武纪侵入体主要为中—细粒花岗闪长岩及细晶闪长岩.为了揭示研究区内新太古代花岗闪长岩成岩时代、岩石成因及地质意义,依托相关地质调查项目,在...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号