首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper discusses the analysis and modelling of the hydrological system of the basin of the Kara River, a transboundary river in Togo and Benin, as a necessary step towards sustainable water resources management. The methodological approach integrates the use of discharge parameters, flow duration curves and the lumped conceptual model IHACRES. A Sobol sensitivity analysis is performed and the model is calibrated by applying the shuffled complex evolution algorithm. Results show that discharge generation in three nested catchments of the basin is affected by landscape physical characteristics. The IHACRES model adequately simulates the rainfall–runoff dynamics in the basin with a mean modified Nash-Sutcliffe efficiency measure of 0.6. Modelling results indicate that parameters controlling rainfall transformation to effective rainfall are more sensitive than those routing the streamflow. This study provides insights into understanding the catchment’s hydrological system. Nevertheless, further investigations are required to better understand detailed runoff generation processes.
EDITOR M.C. Acreman; ASSOCIATE EDITOR N Verhoest  相似文献   

3.
The objective of the study is to evaluate the potential of a data assimilation system for real-time flash flood forecasting over small watersheds by updating model states. To this end, the Ensemble Square-Root-Filter (EnSRF) based on the Ensemble Kalman Filter (EnKF) technique was coupled to a widely used conceptual rainfall-runoff model called HyMOD. Two small watersheds susceptible to flash flooding from America and China were selected in this study. The modeling and observational errors were considered in the framework of data assimilation, followed by an ensemble size sensitivity experiment. Once the appropriate model error and ensemble size was determined, a simulation study focused on the performance of a data assimilation system, based on the correlation between streamflow observation and model states, was conducted. The EnSRF method was implemented within HyMOD and results for flash flood forecasting were analyzed, where the calibrated streamflow simulation without state updating was treated as the benchmark or nature run. Results for twenty-four flash-flood events in total from the two watersheds indicated that the data assimilation approach effectively improved the predictions of peak flows and the hydrographs in general. This study demonstrated the benefit and efficiency of implementing data assimilation into a hydrological model to improve flash flood forecasting over small, instrumented basins with potential application to real-time alert systems.  相似文献   

4.
Irrigation is the major water supply for crop production in water‐limited regions. However, this important water component is usually neglected or simplified in hydrological modelling primarily because information concerning irrigation is notably difficult to collect. To assess real effects of irrigation on the simulation of evapotranspiration (ET) in water‐limited region, the Community Land Model version 4 was established over a typical semi‐humid agricultural basin in the northern China – the Haihe River basin. In the irrigated cropland, incorporating an irrigation scheme can enhance the simulated ET and improve the simulation of spatial variability of soil moisture content. We found that different configurations in the irrigation scheme do not cause significant differences in the simulated annual ET. However, simulated ET with simulated irrigation differs clearly from that with observed irrigation in mean annual magnitude, long‐term trend and spatial distribution. Once the irrigation scheme is well‐calibrated against observations, it reasonably reproduces the interannual variability of annual irrigation, when irrigation water management is relatively stable. More importantly, parameter calibration should be consistent with the configuration of the source of irrigation water. However, an irrigation scheme with a constant parameter value cannot capture the trend in the annual irrigation amount caused by abrupt changes in agricultural water management. Compared with different remotely sensed ET products, the enhancement in the simulated ET by irrigation is smaller than the differences among these products, and the trend in simulated ET with the observed irrigation cannot be captured correctly by the remotely sensed ET. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Investigation of the variations in runoff, sediment load, and their dynamic relation is conducive to understanding hydrological regime changes and supporting channel regulation and fluvial management. This study is undertaken in the Xihanshui catchment, which is known for its high sediment-laden in the Jialing River of the Yangtze River basin, southern China, to evaluate the change characteristics of runoff, sediment load, and their relationship at multi-temporal scales from 1966 to 2016. The results showed that runoff changed significantly for more months, whereas the significant changes in monthly sediment load occurred from April to September. The contributions of runoff in summer and autumn and sediment load in summer to their annual value changes were greater. Annual runoff and sediment load in the Xihanshui catchment both exhibited significant decreasing trends (p < 0.05) with a significant mutation in 1993 (p < 0.05). The average annual runoff in the change period (1994–2016) decreased by 49.58% and annual sediment load displayed a substantial decline with a reduction of 77.77% in comparison with the reference period (1966–1993) due to climate change and intensive human activity. The power functions were satisfactory to describe annual and extreme monthly runoff–sediment relationships, whereas the monthly runoff–sediment relationship and extreme monthly sediment-runoff relationship were changeable. Spatially, annual runoff–sediment relationship alteration could be partly attributed to sediment load changes in the upstream area and runoff variations in the downstream region. Three quantitative methods revealed that the main driver for significant reductions of annual runoff and sediment load is the human activity dominated by soil and water conservation measures, while climate change only contributed 22.73%–38.99% (mean 32.07%) to the total runoff reduction and 3.39%–35.56% (mean 17.32%) to the total decrease in sediment load.  相似文献   

6.
Most runoff analyses using a grid‐based distributed model use one parameter group calibrated at the outlet of a watershed, instead of dividing the watershed into subwatersheds. Significant differences between the observed value and the simulation result of the subwatersheds can occur if just one parameter group is used in all subwatersheds that have different hydrological characteristics from each other. Therefore, to improve the simulation results of the subwatersheds within a watershed, a model calibrated at every subwatershed needs to be used to reflect the characteristics of each subwatershed. In this study, different parameter groups were set up for one or two sites using a distributed model, the GRM (Grid based Rainfall‐runoff Model), and the evaluations were based on the results of rainfall–runoff analysis, which uses a multi‐site calibration (MSC) technique to calibrate the model at the outlet of each site. The Hyangseok watershed in Naeseong River, which is a tributary of Nakdong River in Korea, was chosen as the study area. The watershed was divided into five subwatersheds each with a subwatershed outlet that was applied to the calibration sites . The MSC was applied for five cases. When a site was added for calibration in a watershed, the runoff simulation showed better results than the calibration of only one site at the most downstream area of the watershed. The MSC approach could improve the simulation results on the calibrated sites and even on the non‐calibrated sites, and the effect of MSC was improved when the calibrated site was closer to the runoff site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Quantifying the relative contributions of different factors to runoff change is helpful for basin management, especially in the context of climate change and anthropogenic activities. The effect of snow change on runoff is seldom evaluated. We attribute the runoff change in the Heihe Upstream Basin (HUB), an alpine basin in China, using two approaches: a snowmelt-based water balance model and the Budyko framework. Results from these approaches show good consistency. Precipitation accounts for 58% of the increasing runoff. The contribution of land-cover change seems unremarkable for the HUB as a whole, where land-cover change has a major effect on runoff in each sub-basin, but its positive effect on increasing runoff in sub-basins 1 and 3 is offset by the negative effect in sub-basin 2. Snow change plays an essential role in each sub-basin, with a contribution rate of around 30%. The impact of potential evapotranspiration is almost negligible.

EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR S. Huang  相似文献   

8.
ABSTRACT

The objective of this study was to evaluate, based on a data-scarce basin in southern Brazil, the potential of the Lavras Simulation of Hydrology (LASH) model for estimating daily streamflows, annual streamflow indicators and the flow–duration curve. It was also used to simulate the different runoff components and their consistency with the basin physiographical characteristics. The statistical measures indicated that LASH can be considered suitable according to widely used classifications and when compared with other studies involving hydrological models. LASH also showed satisfactory results for annual indicators, especially for maximum and average annual streamflows, as well as for the flow–duration curve. It was found that the model was consistent with the basin characteristics when simulating runoff components. The results obtained in this study allowed us to conclude that the LASH model has the potential to aid practitioners in water resources management of basins with scarce data and similar soil and land-use conditions.
Editor A. Castellarin; Associate editor Y. Gyasi-Agyei  相似文献   

9.
Quantitative evaluation of the effect of climate variability and human activities on runoff is of great importance for water resources planning and management in terms of maintaining the ecosystem integrity and sustaining the society development. In this paper, hydro‐climatic data from four catchments (i.e. Luanhe River catchment, Chaohe River catchment, Hutuo River catchment and Zhanghe River catchment) in the Haihe River basin from 1957 to 2000 were used to quantitatively attribute the hydrological response (i.e. runoff) to climate change and human activities separately. To separate the attributes, the temporal trends of annual precipitation, potential evapotranspiration (PET) and runoff during 1957–2000 were first explored by the Mann–Kendall test. Despite that only Hutuo River catchment was dominated by a significant negative trend in annual precipitation, all four catchments presented significant negative trend in annual runoff varying from ?0.859 (Chaohe River) to ?1.996 mm a?1 (Zhanghe River). Change points in 1977 and 1979 are detected by precipitation–runoff double cumulative curves method and Pettitt's test for Zhanghe River and the other three rivers, respectively, and are adopted to divide data set into two study periods as the pre‐change period and post‐change period. Three methods including hydrological model method, hydrological sensitivity analysis method and climate elasticity method were calibrated with the hydro‐climatic data during the pre‐change period. Then, hydrological runoff response to climate variability and human activities was quantitatively evaluated with the help of the three methods and based on the assumption that climate and human activities are the only drivers for streamflow and are independent of each other. Similar estimates of anthropogenic and climatic effects on runoff for catchments considered can be obtained from the three methods. We found that human activities were the main driving factors for the decline in annual runoff in Luanhe River catchment, Chaohe River catchment and Zhanghe River catchment, accounting for over 50% of runoff reduction. However, climate variability should be responsible for the decrease in annual runoff in the Hutuo River catchment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
This study explores the feasibility of an entirely satellite remote sensing (RS)‐based hydrologic budget model for a ground data‐constrained basin, the Rufiji basin in Tanzania, from the balance of runoff (Q), precipitation (P), storage change (ΔS), and evapotranspiration (ET). P was determined from the Tropical Rainfall Measuring Mission, ΔS from the Gravity Recovery and Climate Experiment, and ET from the Moderate Resolution Imaging Spectroradiometer, the surface radiation budget, and the Atmosphere Infrared Radiation Sounder. Q was estimated as a residual of the water balance and tested against measured Q for a sub‐basin of the Rufiji (the Usangu basin) where ground measurements were available (R2 = 0.58, slope = 1.9, root mean square error = 29 mm/month, bias = 14%). We also tested a geographical information system (GIS)‐driven (ArcCN‐runoff) runoff model (R2 = 0.64, slope = 0.43, root mean square error = 39 mm/month). We conducted an error propagation analysis from each of the model's hydrologic components (P, ET, and ΔS). We find that the RS‐based model amplitude is most sensitive to ET and slightly less so to P, whereas the model's seasonal trends are most sensitive to ?S. Although RS–GIS‐driven models are becoming increasingly used, our results indicate that long‐term water resource assessment policy and management may be more appropriate than ‘instantaneous’ or short‐term water resource assessment. However, our analyses help develop a series of tools and techniques to progress our understanding of RS–GIS in water resource management of data‐constrained basins at the level of a water resource manager. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Modelling of the rainfall–runoff transformation process and routing of river flows in the Kilombero River basin and its five sub-catchments within the Rufiji River basin in Tanzania was undertaken using three system (black-box) models—a simple linear model, a linear perturbation model and a linear varying gain factor model—in their linear transfer function forms. A lumped conceptual model—the soil moisture accounting and routing model—was also applied to the sub-catchments and the basin. The HEC-HMS model, which is a distributed model, was applied only to the entire Kilombero River basin. River discharge, rainfall and potential evaporation data were used as inputs to the appropriate models and it was observed that sometimes the system models performed better than complex hydrological models, especially in large catchments, illustrating the usefulness of using simple black-box models in datascarce situations.  相似文献   

12.
ABSTRACT

The temporal dynamics of groundwater–surface water interaction under the impacts of various water abstraction scenarios are presented for hydraulic fracturing in a shale gas and oil play area (23 984.9 km2), Alberta, Canada, using the MIKE-SHE and MIKE-11 models. Water-use data for hydraulic fracturing were obtained for 433 wells drilled in the study area in 2013 and 2014. Modelling results indicate that water abstraction for hydraulic fracturing has very small (<0.35%) negative impacts on mean monthly and annual river and groundwater levels and stream and groundwater flows in the study area, and small (1–4.17%) negative impacts on environmental flows near the water abstraction location during low-flow periods. The impacts on environmental flow depend on the amount of water abstraction and the daily flow over time at a specific river cross-section. The results also indicate a very small (<0.35%) positive impact on mean monthly and annual groundwater contributions to streamflow because of the large study area. The results provide useful information for planning long-term seasonal and annual water abstractions from the river and groundwater for hydraulic fracturing in a large study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号