首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assessments of hydrological response to climatic changes are characterized by different types of uncertainties. Here, the uncertainty caused by weather noise associated with the chaotic character of atmospheric processes is considered. A technique for estimating such uncertainty in simulated water balance components based on application of the land surface model SWAP and the climate model ECHAM5 is described. The technique is applied for estimating the uncertainties in the simulated water balance components (precipitation, river runoff and evapotranspiration) of some northern river basins of Russia. It is shown that the larger the area of a basin the less the uncertainty. This dependency is smoothed by differences in natural conditions of the basins. Analysis of the spectral densities of water balance components shows that a river basin filters out high-frequency harmonics of spectral density of precipitation (corresponding to synoptic or sub-seasonal scale) during its transformation into evapotranspiration and especially into runoff.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR H. Kreibich  相似文献   

2.
Abstract

A new methodology is proposed for the calibration of distributed hydrological models at the basin scale by constraining an internal model variable using satellite data of land surface temperature (LST). The model algorithm solves the system of energy and mass balances in terms of a representative equilibrium temperature that governs the fluxes of energy and mass over the basin domain. This equilibrium surface temperature, which is a critical model state variable, is compared to operational satellite LST, while calibrating soil hydraulic parameters and vegetation variables differently in each pixel, minimizing the errors. This procedure is compared to the traditional calibration using only discharge measurements. The distributed energy water balance model, Flash-flood Event-based Spatially-distributed rainfall–runoff Transformation – Energy Water Balance model (FEST-EWB), is used to test this approach. This methodology is applied to the Upper Yangtze River basin (China) using MODIS LST retrieved from satellite data in the framework of the NRSCC-ESA DRAGON-2 Programme. The calibration procedure based on LST seems to outperform the calibration based on discharge, with lower relative error and higher Nash-Sutcliffe efficiency index on cumulated volume.
Editor D. Koutsoyiannis; Associate editor C. Perrin  相似文献   

3.
Abstract

As watershed models become increasingly sophisticated and useful, there is a need to extend their applicability to locations where they cannot be calibrated or validated. A new methodology for the regionalization of a watershed model is introduced and evaluated. The approach involves calibration of a watershed model to many sites in a region, concurrently. Previous research that has sought to relate the parameters of monthly water balance models to physical drainage basin characteristics in a region has met with limited success. Previous studies have taken the two-step approach: (a) estimation of watershed model parameters at each site, followed by (b) attempts to relate model parameters to drainage basin characteristics. Instead of treating these two steps as independent, both steps are implemented concurrently. All watershed models in a region are calibrated simultaneously, with the dual objective of reproducing the behaviour of observed monthly streamflows and, additionally, to obtain good relationships between watershed model parameters and basin characteristics. The approach is evaluated using 33 basins in the southeastern region of the United States by comparing simulations using the regional models for three catchments which were not used to develop the regional regression equations. Although the regional calibration approach led to nearly perfect regional relationships between watershed model parameters and basin characteristics, these “improved” regional relationships did not result in improvements in the ability to model streamflow at ungauged sites. This experiment reveals that improvements in regional relationships between watershed model parameters and basin characteristics will not necessarily lead to improvements in the ability to calibrate a watershed model at an ungauged site.  相似文献   

4.
Abstract

An integrated model, combining a surface energy balance system, an LAI-based interception model and a distributed monthly water balance model, was developed to predict hydrological impacts of land-use/land-cover change (LUCC) in the East River basin, China, with the aid of GIS/RS. The integrated model is a distributed model that not only accounts for spatial variations in basin terrain, rainfall and soil moisture, but also considers spatial and temporal variation of vegetation cover and evapotranspiration (ET), in particular, thus providing a powerful tool for investigating the hydrological impact of LUCC. The model was constructed using spatial data on topography, soil types and vegetation characteristics together with time series of precipitation from 170 stations in the basin. The model was calibrated and validated based on river discharge data from three stations in the basin for 21 years. The calibration and validation results suggested that the model is suitable for application in the basin. The results show that ET has a positive relationship with LAI (leaf area index), while runoff has a negative relationship with LAI in the same climatic zone that can be described by the surface energy balance and water balance equation. It was found that deforestation would cause an increase in annual runoff and a decrease in annual ET in southern China. Monthly runoff for different land-cover types was found to be inversely related to ET. Also, for most of the scenarios, and particularly for grassland and cropland, the most significant changes occurred in the rainy season, indicating that deforestation would cause a significant increase in monthly runoff in that season in the East River basin. These results are important for water resources management and environmental change monitoring.
Editor Z.W. Kundzewicz  相似文献   

5.
ABSTRACT

A method of predicting the storm surges in a water body using the normal modes of the basin is described. Such a procedure eliminates the explicit use of a finite difference mesh in space and reduces the prediction equations to a system of ordinary time-dependent equations which can be solved in several ways. Application of the spectral (or normal mode) expansion technique to an ideal case is presented.  相似文献   

6.
Abstract

Estimating water resources is important for adequate water management in the future, but suitable data are often scarce. We estimated water resources in the Vilcanota basin (Peru) for the 1998–2009 period with the semi-distributed hydrological model PREVAH using: (a) raingauge measurements; (b) satellite rainfall estimates from the TRMM Multi-satellite Precipitation Analysis (TMPA); and (c) ERA-Interim re-analysis data. Multiplicative shift and quantile mapping were applied to post-process the TMPA estimates and ERA-Interim data. This resulted in improved low-flow simulations. High-flow simulations could only be improved with quantile mapping. Furthermore, we adopted temperature and rainfall anomalies obtained from three GCMs for three future periods to make estimations of climate change impacts (Delta-change approach) on water resources. Our results show more total runoff during the rainy season from January to March, and temporary storages indicate that less water will be available in this Andean region, which has an effect on water supply, especially during dry season.

Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

7.
Abstract

The caesium-137 technique affords both an alternative to conventional measurement methods and an effective quantitative estimate of soil redistribution at the basin scale. Among the available calibration relationships which link the degree of increase or depletion of the 137Cs activity relative to the baseline 137Cs input and sediment yield, the mass balance approach has received increased application for its physical basis. First, the applicability of the refined simplified point-based mass balance (RSPMB) model of Zhang et al. (1999) at the scale of the morphological unit is proposed herein. The 137Cs spatial distribution measured in a small Sicilian basin and the spatial distribution of the sediment yield calculated by a sediment delivery distributed approach are used to estimate values of the two key parameters of the RSPMB model, φ1 and φ2, the fraction of 137Cs fallout incorporated into soil and a particle size correction factor, respectively. Finally, the best procedure for experimental testing of a distributed sediment yield model by using caesium-137 measurements is investigated.  相似文献   

8.
Abstract

Since eroded sediments are produced from different sources distributed throughout a basin, sediment delivery processes at basin scale have to be modelled by a spatially distributed approach. In this paper a new theoretically based relationship is proposed for evaluating the sediment delivery ratio, SDRi, of each morphological unit, i, into which a basin is divided. Then, using the sediment balance equation written for the basin outlet, a relationship between the basin sediment delivery ratio, SDRW and the SDRi is deduced. This relationship is shown to be independent of the soil erosion model used. Finally, a morphological criterion for estimating a coefficient, β, is proposed.  相似文献   

9.
Abstract

Quantifying the reliability of distributed hydrological models is an important task in hydrology to understand their ability to estimate energy and water fluxes at the agricultural district scale as well the basin scale for water resources management in drought monitoring and flood forecasting. In this context, the paper presents an intercomparison of simulated representative equilibrium temperature (RET) derived from a distributed energy water balance model and remotely-sensed land surface temperature (LST) at spatial scales from the agricultural field to the river basin. The main objective of the study is to evaluate the use of LST retrieved from operational remote sensing data at different spatial and temporal resolutions for the internal validation of a distributed hydrological model to control its mass balance accuracy as a complementary method to traditional calibration with discharge measurements at control river cross-sections. Modelled and observed LST from different radiometric sensors located on the ground surface, on an aeroplane and a satellite are compared for a maize field in Landriano (Italy), the agricultural district of Barrax (Spain) and the Upper Po River basin (Italy). A good ability of the model in reproducing the observed LST values in terms of mean bias error, root mean square error, relative error and Nash-Sutcliffe index is shown.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

10.
《水文科学杂志》2013,58(2):314-324
Abstract

An approach to the global estimation of water balance elements and their spatial distribution using GIS is presented. It is primarily related to the catchments where measured data are scarce and the spatial differentiation of the hydrological characteristics is not possible without climatological data. Emphasis is placed on estimating the water balance of transboundary karstic aquifers, where problems concerning the hydrometeorological data, catchment boundaries and determination of water balance elements in general are far more complex. The runoff estimation was done using the Turc and Langbein methods, which are the most frequently applied in this region. The years 1961–1990 were used as the reference period. Based on comparison of the results, the applicability of the methods is discussed. The approach proposed is suitable for estimation of water balance in the study area and may also be applied in a wider region.  相似文献   

11.
Quantitative relationships between groundwater runoff and other water balance components are obtained. These relationships enable the prediction of changes in groundwater nourishment in different natural-geographic zones on the Earth because of global climatic changes and intense anthropogenic impact on the water regime of different areas. Groundwater runoff values (natural groundwater resources) in individual river basins are estimated. Digital maps (grid-models) of the space and time distribution of water balance elements (based on GIS-technology) are constructed for major river basins in European Russia, and river runoff is calculated in each grid node in river basins with a step of 0.1° in geographic coordinates. The values of major water balance components, thus related with one another, serve as the basis for their spatial and temporal analysis and cartographic representation. The proposed method was tested against data on Volga basin where long-term observational data on water balance elements are available in a number of hydrometric sections.  相似文献   

12.
Abstract

Streamflow variability in the Upper and Lower Litani basin, Lebanon was modelled as there is a lack of long-term measured runoff data. To simulate runoff and streamflow, daily rainfall was derived using a stochastic rainfall generation model and monthly rainfall data. Two distinct synthetic rainfall models were developed based on a two-part probabilistic distribution approach. The rainfall occurrence was described by a Markov chain process, while the rainfall distribution on wet days was represented by two different distributions (i.e. gamma and mixed exponential distributions). Both distributions yielded similar results. The rainfall data were then processed using water balance and routing models to generate daily and monthly streamflow. Compared with measured data, the model results were generally reasonable (mean errors ranging from 0.1 to 0.8?m3/s at select locations). Finally, the simulated monthly streamflow data were used to investigate discharge trends in the Litani basin during the 20th century using the Mann-Kendall and Sen slope nonparametric trend detection methods. A significant drying trend of the basin was detected, reaching a streamflow reduction of 0.8 and 0.7 m3/s per decade in January for the Upper and Lower basin, respectively.

Editor D. Koutsoyiannis; Associate editor Sheng Yue

Citation Ramadan, H.H., Beighley, R.E., and Ramamurthy, A.S., 2012. Modelling streamflow trends for a watershed with limited data: case of the Litani basin, Lebanon. Hydrological Sciences Journal, 57 (8), 1516–1529.  相似文献   

13.
Abstract

Abstract An annual water balance model of Lake Victoria is derived for the period 1925–2000. Regression techniques are used to derive annual inputs to the water balance, based on lake rainfall data, measured and derived inflows and estimated evaporation during the historical period. This approach acknowledges that runoff is a nonlinear function of lake rainfall. A longer inflow series is produced here which is representative of the whole inflow to the lake, rather than just from individual tributaries. The results show a good simulation of annual lake levels and outflows and capture the high lake level in 1997–1998. Climate change scenarios, from a recent global climate model experiment, are applied to the lake rainfall inflow series and evaporation data to estimate future water balances of the lake. The scenarios produce a potential fall in lake levels by the 2030s horizon, and a rise by the 2080s horizon. A discussion of the application of climate change data to this complex hydrological system is presented.  相似文献   

14.
A raster‐based glacier sub‐model was successfully introduced in the distributed hydrological model FEST‐WB to simulate the water balance and surface runoff of large Alpine catchments. The glacier model is based on temperature‐index approach for melt, on linear reservoir for melt water propagation into the ice and on mass balance for accumulation; the initialization of the volume of ice on the basin was based on a formulation depending on surface topography. The model was first tested on a sub‐basin of the Rhone basin (Switzerland), which is for 62% glaciated; the calibration and validation were based on comparison between simulated and observed discharge from 1999 to 2008. The model proved to be suitable to simulate the typical discharge seasonality of a heavily glaciated basin. The performance of the model was also tested by simulating discharge in the whole Swiss Rhone basin, in which glaciers contribution is not negligible, in fact, in summer, about the 40% of the discharge is due to glacier melt. The model allowed to take into account the volume of water coming from glaciers melt and its simple structure is suitable for analysis of the effects of climate change on hydrological regime of high mountain basins, with available meteorological forcing from current RCM. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Because the properties of eroded soil affect the deposition phenomena and transport capacity of chemical materials by eroded particles, recent research is trying to link the grain-size distribution of the eroded sediment to that of the original soil in order to explain the enrichment of chemical content of the sediment with the respect to the parent soil. In this study, the spatial distribution of nitrogen, phosphorus and total organic carbon was firstly deduced using the measurements carried out in 47 soil samples distributed over a forested basin together with a kriging interpolation method. Then the load of each chemical was calculated at morphological unit and basin scales using the above-mentioned spatial distributions and sediment yield values calculated by the SEDD (SEdiment Delivery Distributed) model, which couples the universal soil loss equation with a spatial disaggregation criterion of sediment delivery processes. Finally, at basin scale, a new expression of the enrichment ratio of a given chemical was applied.  相似文献   

16.
Abstract

Climate change is recognized to be one of the most serious challenges facing mankind today. Driven by anthropogenic activities, it is known to be a direct threat to our food and water supplies and an indirect threat to world security. Increase in the concentration of carbon dioxide and other greenhouse gases in the atmosphere will certainly affect hydrological regimes. The consequent global warming is expected to have major implications on water resources management. The objective of this research is to present a general approach for evaluating the impacts of potential climate change on streamflow in a river basin in the humid tropical zone of India. Large-scale global climate models (GCMs) are the best available tools to provide estimates of the effect of rising greenhouse gases on rainfall and temperature. However the spatial resolution of these models (250 km?×?250 km) is not compatible with that of watershed hydrological models. Hence the outputs from GCMs have to be downscaled using regional climate models (RCMs), so as to project the output of a GCM to a finer resolution (50 km?×?50 km). In the present work, the projections of a GCM for two scenarios, A2 and B2 are downscaled by a RCM to project future climate in a watershed. Projections for two important climate variables, viz. rainfall and temperature are made. These are then used as inputs for a physically-based hydrological model, SWAT, in order to evaluate the effect of climate change on streamflow and vegetative growth in a humid tropical watershed.

Citation Raneesh, K. Y. & Santosh, G. T. (2011) A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrol. Sci. J. 56(6), 946–965.  相似文献   

17.
ABSTRACT

Standard hydrological methods have been used to evaluate the water balance of a Central American river basin located in Costa Rica, for the purpose of appraising its water resources potential.

Estimates are made of the present utilization of water by each major sectorial user, and a comparison of demand and supply is presented that enables the determination of the degree of present utilisation of water resources.  相似文献   

18.
Abstract

The objective of this study is to measure the balance of water demand versus water resource availability in an interfluve of West Bengal, India to support water resource planning, particularly of inter-basin transfers. Surface water availability was modelled using the US Soil Conservation Service curve number (SCS-CN) approach, whilst groundwater availability was modelled based on water-level fluctuations and the rainfall infiltration method. Water use was modelled separately for the agricultural, industrial, and domestic sectors using a predominantly normative approach and water use to availability ratios calculated for different administrative areas within the interfluve. Overall, the approach suggested that the interfluve receives 327 × 106 m3 year-1 of excess water after satisfying these sectoral demands, but that the eastern part of the study area is in deficit. However, a sensitivity analysis carried on the approach to several assumptions in the model suggested changed circumstances would produce surplus/deficit ranging from ?215 × 106 to 435 × 106 m3 year-1 . The approach could have potential for localised water balance modelling in other Indian catchments.
Editor D. Koutsoyiannis; Associate editor D. Hughes  相似文献   

19.
D. Yu  S. N. Lane 《水文研究》2011,25(1):36-53
Numerical modelling of flood inundation over large and complex floodplains often requires mesh resolutions coarser than the structural features (e.g. buildings) that are known to influence the inundation process. Recent research has shown that this mismatch is not well represented by conventional roughness treatments, but that finer‐scale features can be represented through porosity‐based subgrid‐scale treatments. This paper develops this work by testing the interactions between feature representation, subgrid‐scale resolution and mesh resolution. It uses as the basis for this testing a 2D diffusion‐based flood inundation model which is applied to a 2004 flood event in a topologically complex upland floodplain in northern England. This study formulated simulations with different grid mesh resolution and subgrid mesh ratio. The sensitivity of the model to mesh resolution and roughness specification was investigated. Model validation and verification suggest that the subgrid treatment with higher subgrid mesh ratio can give much improved predictions of flood propagation, in particular, in terms of the predicted water depth. This study also highlighted the limitation of using at‐a‐point in time inundation extent for validation of flood models of this type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this study we quantify the spatial variability of seasonal water balances within the Omo-Ghibe River Basin in Ethiopia using methods proposed within the Prediction in Ungauged Basins initiative. Our analysis consists of: (1) application of the rainfall–runoff model HBV-Light to several sub-catchments for which runoff data are available, and (2) estimation of water balances in the remaining ungauged catchments through application of the model with regionalized parameters. The analyses of the resulting water balance outcomes reveal that the seasonal water balance across the Omo-Ghibe Basin is driven by precipitation regimes that change with latitude, from being strongly “seasonal” in the north to “precipitation spread throughout the year, but with a definite wetter season” in the south. The basin is divided into two distinct regions based on patterns of seasonal water balance and, in particular, seasonal patterns of soil moisture storage.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR A. Efstratiadis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号