首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

The study of sediment load is important for its implications to the environment and water resources engineering. Four models were considered in the study of suspended sediment concentration prediction: artificial neural networks (ANNs), neuro-fuzzy model (NF), conjunction of wavelet analysis and neuro-fuzzy (WNF) model, and the conventional sediment rating curve (SRC) method. Using data from a US Geological Survey gauging station, the suspended sediment concentration predicted by the WNF model was in satisfactory agreement with the measured data. Also the proposed WNF model generated reasonable predictions for the extreme values. The cumulative suspended sediment load estimated by this model was much higher than that predicted by the other models, and is close to the observed data. However, in the current modelling, the ANN, NF and SRC models underestimated sediment load. The WNF model was successful in reproducing the hysteresis phenomenon, but the SRC method was not able to model this behaviour. In general, the results showed that the NF model performed better than the ANN and SRC models.

Citation Mirbagheri, S. A., Nourani, V., Rajaee, T. & Alikhani, A. (2010) Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 55(7), 1175–1189.  相似文献   

2.
ABSTRACT

This study examines the performance of three hydrological models, namely the artificial neural network (ANN) model, the Hydrologiska Byråns Vattenbalansavdelning-D (HBV-D) model, and the Soil and Water Integrated Model (SWIM) over the upper reaches of the Huai River basin. The assessment is done by using databases of different temporal resolution and by further examining the applicability of SWIM for different catchment sizes. The results show that at monthly scale the performance of the ANN model is better than that of HBV-D and SWIM. The ANN model can be applied at any temporal scale as it establishes an artificial precipitation–runoff relationship for various time scales by only using monthly precipitation, temperature and runoff data. However, at daily scale the performance of both HBV-D and SWIM are similar or even better than the ANN model. In addition, the performance of SWIM at a small catchment size (less than 10 000 km2) is much better than at a larger catchment size. In view of climate change modelling, HBV-D and SWIM might be integrated in a dynamical atmosphere-water-cycle modelling rather than the ANN model due to their use of observed physical links instead of artificial relations within a black box.
Editor D. Koutsoyiannis; Associate editor D. Hughes  相似文献   

3.
Abstract

New wavelet and artificial neural network (WA) hybrid models are proposed for daily streamflow forecasting at 1, 3, 5 and 7 days ahead, based on the low-frequency components of the original signal (approximations). The results show that the proposed hybrid models give significantly better results than the classical artificial neural network (ANN) model for all tested situations. For short-term (1-day ahead) forecasts, information on higher-frequency signal components was essential to ensure good model performance. However, for forecasting more days ahead, lower-frequency components are needed as input to the proposed hybrid models. The WA models also proved to be effective for eliminating the lags often seen in daily streamflow forecasts obtained by classical ANN models. 

Editor D. Koutsoyiannis; Associate editor L. See

Citation Santos, C.A.G. and Silva, G.B.L., 2013. Daily streamflow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrological Sciences Journal, 59 (2), 312–324.  相似文献   

4.
Prediction of factors affecting water resources systems is important for their design and operation. In hydrology, wavelet analysis (WA) is known as a new method for time series analysis. In this study, WA was combined with an artificial neural network (ANN) for prediction of precipitation at Varayeneh station, western Iran. The results obtained were compared with the adaptive neural fuzzy inference system (ANFIS) and ANN. Moreover, data on relative humidity and temperature were employed in addition to rainfall data to examine their influence on precipitation forecasting. Overall, this study concluded that the hybrid WANN model outperformed the other models in the estimation of maxima and minima, and is the best at forecasting precipitation. Furthermore, training and transfer functions are recommended for similar studies of precipitation forecasting.  相似文献   

5.
Abstract

A wavelet-neural network (WNN) hybrid modelling approach for monthly river flow estimation and prediction is developed. This approach integrates discrete wavelet multi-resolution decomposition and a back-propagation (BP) feed-forward multilayer perceptron (FFML) artificial neural network (ANN). The Levenberg-Marquardt (LM) algorithm and the Bayesian regularization (BR) algorithm were employed to perform the network modelling. Monthly flow data from three gauges in the Weihe River in China were used for network training and testing for 48-month-ahead prediction. The comparison of results of the WNN hybrid model with those of the single ANN model show that the former is able to significantly increase the prediction accuracy.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Wei, S., Yang, H., Song, J.X., Abbaspour, K., and Xu, Z.X., 2013. A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrological Sciences Journal, 58 (2), 374–389.  相似文献   

6.
Turgay Partal 《水文研究》2009,23(25):3545-3555
This study combines wavelet transforms and feed‐forward neural network methods for reference evapotranspiration estimation. The climatic data (air temperature, solar radiation, wind speed, relative humidity) from two stations in the United States was evaluated for estimating models. For wavelet and neural network (WNN) model, the input data was decomposed into wavelet sub‐time series by wavelet transformation. Later, the new series (reconstructed series) are produced by adding the available wavelet components and these reconstructed series are used as the input of the WNN model. This phase is pre‐processing of raw data and the main different of the WNN model. The performance of the WNN model was compared with classical neural networks approach [artificial neural network (ANN)], multi‐linear regression and Hargreaves empirical method. This study shows that the wavelet transforms and neural network methods could be applied successfully for evapotranspiration modelling from climatic data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Artificial neural network (ANN) models provide huge potential for simulating nonlinear behaviour of hydrological systems. However, the potential of ANN is yet to be fully exploited due to the problems associated with improving the model generalization performance. Generalization refers to the ability of a neural network to correctly process input data that have not been used for calibrating the neural network model. In the hydrological context, better generalization performance implies higher precision of forecasting. The primary objectives of this study are to explore new measures for improving the generalization performance of an ANN-based rainfall–runoff model, and to evaluate the applicability of the new measures. A modified neural network model (entitled goal programming (GP) neural network) for modelling the rainfall–runoff process has been developed, in which three enhancements are made as compared to the widely-used backpropagation (BP) network. The three enhancements are (a) explicit integration of hydrological prior knowledge into the neural network learning; (b) incorporation of a modified training objective function; and (c) reduction of network sensitivity to input errors. Seven watersheds across a range of climatic conditions and watershed areas in China were selected for examining the alternative networks. The results demonstrate that the GP consistently outperformed the BP both in the calibration and verification periods and three proposed measures yielded improvement of performance.  相似文献   

8.
ABSTRACT

Combinations of low-frequency components (also known as approximations) resulting from the wavelet decomposition are tested as inputs to an artificial neural network (ANN) in a hybrid approach, and compared to classical ANN models for flow forecasting for 1, 3, 6 and 12 months ahead. In addition, the inputs are rewritten in terms of the flow, revealing what type of information was being provided to the network, in order to understand the effect of the approximations on the forecasting performance. The results show that the hybrid approach improved the accuracy of all tested models, especially for 1, 3 and 6 months ahead. The input analyses show that high-frequency components are more important for shorter forecast horizons, while for longer horizons, they may worsen the model accuracy.  相似文献   

9.
Drought is one of the most devastating climate disasters. Hence, drought forecasting plays an important role in mitigating some of the adverse effects of drought. Data-driven models are widely used for drought forecasting such as ARIMA model, artificial neural network (ANN) model, wavelet neural network (WANN) model, support vector regression model, grey model and so on. Three data-driven models (ARIMA model; ANN model; WANN model) are used in this study for drought forecasting based on standard precipitation index of two time scales (SPI; SPI-6 and SPI-12). The optimal data-driven model and time scale of SPI are then selected for effective drought forecasting in the North of Haihe River Basin. The effectiveness of the three data-models is compared by Kolmogorov–Smirnov (K–S) test, Kendall rank correlation, and the correlation coefficients (R2). The forecast results shows that the WANN model is more suitable and effective for forecasting SPI-6 and SPI-12 values in the north of Haihe River Basin.  相似文献   

10.
Özgür Kişi 《水文研究》2009,23(25):3583-3597
The accuracy of the wavelet regression (WR) model in monthly streamflow forecasting is investigated in the study. The WR model is improved combining the two methods—the discrete wavelet transform (DWT) model and the linear regression (LR) model—for 1‐month‐ahead streamflow forecasting. In the first part of the study, the results of the WR model are compared with those of the single LR model. Monthly flow data from two stations, Gerdelli Station on Canakdere River and Isakoy Station on Goksudere River, in Eastern Black Sea region of Turkey are used in the study. The comparison results reveal that the WR model could increase the forecast accuracy of the LR model. In the second part of the study, the accuracy of the WR model is compared with those of the artificial neural networks (ANN) and auto‐regressive (AR) models. On the basis of the results, the WR is found to be better than the ANN and AR models in monthly streamflow forecasting. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

A forecasting model is developed using a hybrid approach of artificial neural network (ANN) and multiple regression analysis (MRA) to predict the total typhoon rainfall and groundwater-level change in the Zhuoshui River basin. We used information from the raingauge stations in eastern Taiwan and open source typhoon data to build the ANN model for forecasting the total rainfall and the groundwater level during a typhoon event; then we revised the predictive values using MRA. As a result, the average accuracy improved up to 80% when the hybrid model of ANN and MRA was applied, even where insufficient data were available for model training. The outcome of this research can be applied to forecasts of total rainfall and groundwater-level change before a typhoon event reaches the Zhuoshui River basin once the typhoon has made landfall on the east coast of Taiwan.  相似文献   

12.
《水文科学杂志》2013,58(2):352-361
Abstract

A real-life problem involving pumping of groundwater from a series of existing wells along a river flood plain underlain with geologically saline water is examined within a conceptual framework. Unplanned pumping results in upconing of saline water. Therefore, it is necessary to determine optimal locations of fixed capacity pumping wells in space and time from a set of pre-selected candidate wells that minimize total salinity concentration in space and time. The nonlinear, non-convex, combinatorial problem involving zero—one decision variables is solved in a simulation—optimization (S/O) framework. Optimization is accomplished by using simulated annealing (SA)—a search algorithm. The computational burden is primarily managed by replacing the numerical model with a surrogate simulator—artificial neural network (ANN). The computational burden is further reduced through intuitive algorithmic guidance. The model results suggest that the skimming wells must be operated from optimal locations such that they are staggered in space and time to obtain least saline water.  相似文献   

13.
Abstract

The accurate prediction of hourly runoff discharge in a watershed during heavy rainfall events is of critical importance for flood control and management. This study predicts n-h-ahead runoff discharge in the Sandimen basin in southern Taiwan using a novel hybrid approach which combines a physically-based model (HEC-HMS) with an artificial neural network (ANN) model. Hourly runoff discharge data (1200 datasets) from seven heavy rainfall events were collected for the model calibration (training) and validation. Six statistical indicators (i.e. mean absolute error, root mean square error, coefficient of correlation, error of time to peak discharge, error of peak discharge and coefficient of efficiency) were employed to evaluate the performance. In comparison with the HEC-HMS model, the single ANN model, and the time series forecasting (ARMAX) model, the developed hybrid HEC-HMS–ANN model demonstrates improved accuracy in recursive n-h-ahead runoff discharge prediction, especially for peak flow discharge and time.  相似文献   

14.
ABSTRACT

Evaporation is one of the most important components in the energy and water budgets of lakes and is a primary process of water loss from their surfaces. An artificial neural network (ANN) technique is used in this study to estimate daily evaporation from Lake Vegoritis in northern Greece and is compared with the classical empirical methods of Penman, Priestley-Taylor and the mass transfer method. Estimation of the evaporation over the lake is based on the energy budget method in combination with a mathematical model of water temperature distribution in the lake. Daily datasets of air temperature, relative humidity, wind velocity, sunshine hours and evaporation are used for training and testing of ANN models. Several input combinations and different ANN architectures are tested to detect the most suitable model for predicting lake evaporation. The best structure obtained for the ANN evaporation model is 4-4-1, with root mean square error (RMSE) from 0.69 to 1.35 mm d?1 and correlation coefficient from 0.79 to 0.92.
EDITOR M.C. Acreman

ASSOCIATE EDITOR not assigned  相似文献   

15.
ABSTRACT

Artificial neural networks (ANNs) become widely used for runoff forecasting in numerous studies. Usually classical gradient-based methods are applied in ANN training and a single ANN model is used. To improve the modelling performance, in some papers ensemble aggregation approaches are used whilst in others, novel training methods are proposed. In this study, the usefulness of both concepts is analysed. First, the applicability of a large number of population-based metaheuristics to ANN training for runoff forecasting is tested on data collected from four catchments, namely upper Annapolis (Nova Scotia, Canada), Biala Tarnowska (Poland), upper Allier (France) and Axe Creek (Victoria, Australia). Then, the importance of the search for novel training methods is compared with the importance of the use of a very simple ANN ensemble aggregation approach. It is shown that although some metaheuristics may slightly outperform the classical gradient-based Levenberg-Marquardt algorithm for a specific catchment, none performs better for the majority of the tested ones. One may also point out a few metaheuristics that do not suit ANN training at all. On the other hand, application of even the simplest ensemble aggregation approach clearly improves the results when the ensemble members are trained by any suitable algorithms.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR E. Toth  相似文献   

16.
Accurate simulation and prediction of the dynamic behaviour of a river discharge over any time interval is essential for good watershed management. It is difficult to capture the high‐frequency characteristics of a river discharge using traditional time series linear and nonlinear model approaches. Therefore, this study developed a wavelet‐neural network (WNN) hybrid modelling approach for the predication of river discharge using monthly time series data. A discrete wavelet multiresolution method was employed to decompose the time series data of river discharge into sub‐series with low (approximation) and high (details) frequency, and these sub‐series were then used as input data for the artificial neural network (ANN). WNN models with different wavelet decomposition levels were employed to predict river discharge 48 months ahead of time. Comparison of results from the WNN models with those of the ANN models alone indicated that WNN models performed a more accurate prediction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The trends of annual, seasonal and monthly precipitation in southern China (Guangdong Province) for the period 1956–2000 are investigated, based on the data from 186 high-quality gauging stations. Statistical tests, including Mann-Kendall rank test and wavelet analysis, are employed to determine whether the precipitation series exhibit any regular trend and periodicity. The results indicate that the annual precipitation has a slightly decreasing trend in central Guangdong and slight increasing trends in the eastern and western areas of the province. However, all the annual trends are not statistically significant at the 95% confidence level. The average precipitation increases in the dry season in central Guangdong, but decreases in the wet season, meaning that the precipitation becomes more evenly distributed within the year. Furthermore, the analysis of monthly precipitation suggests that the distribution of intra-annual precipitation changes over time. The results of wavelet analysis show prominent precipitation with periods ranging from 10 to 12 years in every sub-region in Guangdong Province. Comparing with the sunspot cycle (11-year), the annual precipitation in every sub-region in Guangdong province correlates with Sunspot Number with a 3-year lag. The findings in this paper will be useful for water resources management.

Editor Z.W. Kundzewicz; Associate editor Sheng Yue

Citation Dedi Liu, Shenglian Guo, Xiaohong Chen and Quanxi Shao, 2012. Analysis of trends of annual and seasonal precipitation from 1956 to 2000 in Guangdong Province, China. Hydrological Sciences Journal, 57 (2), 358–369.  相似文献   

18.
A rainfall‐runoff model based on an artificial neural network (ANN) is presented for the Blue Nile catchment. The best geometry of the ANN rainfall‐runoff model in terms of number of hidden layers and nodes is identified through a sensitivity analysis. The Blue Nile catchment (about 300 000 km2) in the Nile basin is selected here as a case study. The catchment is classified into seven subcatchments, and the mean areal precipitation over those subcatchments is computed as a main input to the ANN model. The available daily data (1992–99) are divided into two sets for model calibration (1992–96) and for validation (1997–99). The results of the ANN model are compared with one of physical distributed rainfall‐runoff models that apply hydraulic and hydrologic fundamental equations in a grid base. The results over the case study area and the comparative analysis with the physically based distributed model show that the ANN technique has great potential in simulating the rainfall‐runoff process adequately. Because the available record used in the calibration of the ANN model is too short, the ANN model is biased compared with the distributed model, especially for high flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Ani Shabri 《水文科学杂志》2013,58(7):1275-1293
Abstract

This paper investigates the ability of a least-squares support vector machine (LSSVM) model to improve the accuracy of streamflow forecasting. Cross-validation and grid-search methods are used to automatically determine the LSSVM parameters in the forecasting process. To assess the effectiveness of this model, monthly streamflow records from two stations, Tg Tulang and Tg Rambutan of the Kinta River in Perak, Peninsular Malaysia, were used as case studies. The performance of the LSSVM model is compared with the conventional statistical autoregressive integrated moving average (ARIMA), the artificial neural network (ANN) and support vector machine (SVM) models using various statistical measures. The results of the comparison indicate that the LSSVM model is a useful tool and a promising new method for streamflow forecasting.

Editor D. Koutsoyiannis; Associate editor L. See

Citation Shabri, A. and Suhartono, 2012. Streamflow forecasting using least-squares support vector machines. Hydrological Sciences Journal, 57 (7), 1275–1293.  相似文献   

20.
Abstract

Dissolved oxygen (DO) is one of the most useful indices of river's health and the stream re-aeration coefficient is an important input to computations related to DO. Normally, this coefficient is expressed as a function of several variables, such as mean stream velocity, shear stress velocity, bed slope, flow depth, and Froude number. However, in free surface flows, some of these variables are interrelated, and it is possible to obtain simplified stream re-aeration equations. In recent years, different functional forms have been advanced to represent the re-aeration coefficient for different data sets. In the present study, the artificial neural network (ANN) technique has been applied to estimate the re-aeration coefficient (K 2) using data sets measured at different reaches of the Kali River in India and values obtained from the literature. Observed stream/channel velocity, bed slope, flow depth, cross-sectional area and re-aeration coefficient data were used for the analysis. Different combinations of variables were tested to obtain the re-aeration coefficient using an ANN. The performance of the ANN was compared with other estimation methods. It was found that the re-aeration coefficient estimated by using an ANN was much closer to the observed values as compared with the other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号