首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Changes in water resources availability, as affected by global climate warming, together with changes in water withdrawal, could influence the world water resources stress situation. In this study, we investigate how the world water resources situation will likely change under the Special Report on Emissions Scenarios (SRES) by integrating water withdrawal projections. First, the potential changes in water resources availability are investigated by a multi-model analysis of the ensemble outputs of six general circulation models (GCMs) from organizations worldwide. The analysis suggests that, while climate warming might increase water resources availability to human society, there is a large discrepancy in the size of the water resource depending on the GCM used. Secondly, the changes in water-stressed basins and the number of people living in them are evaluated by two indices at the basin scale. The numbers were projected to increase in the future and possibly to be doubled in the 2050s for the three SRES scenarios A1b, A2 and B1. Finally, the relative impacts of population growth, water use change and climate warming on world water resources are investigated using the global highly water-stressed population as an overall indicator. The results suggest that population and socio-economic development are the major drivers of growing world water resources stress. Even though water availability was projected to increase under different warming scenarios, the reduction of world water stress is very limited. The principal alternative to sustainable governance of world water resources is to improve water-use efficiency globally by effectively reducing net water withdrawal.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   

2.
《水文科学杂志》2013,58(6):1068-1078
Abstract

The study aims to set and implement environmentally relevant limits for the exploitation of mountain streams in the Kura River basin of Azerbaijan. Such streams represent the preferred spawning grounds for valuable sturgeon of the Caspian Sea, but experience continuously increasing exploitation in the form of water withdrawals for industry and irrigation. Since no detailed environmental flow assessments have been conducted on any of the Kura basin streams, an interim approach is suggested based on minimum flow, referred to as “base environmental minimum”. The latter may be estimated from the unregulated parts of observed or simulated daily flow records. Environmental flow requirements for individual months of an individual year may be calculated using correction factors related to monthly rainfall. Simple relationships are suggested for base environmental flow estimation at ungauged sites, and the implications of river pollution for monthly environmental requirements are examined. Further, definition of environmentally critical periods in a stream is proposed based on a ratio of observed to “environmental” flow as an indicator of environmental stress. It is illustrated that the conjunctive use of several closely located streams for water supply may significantly reduce the duration of, or completely eliminate, environmentally critical periods. The idea of environmentally acceptable areal water withdrawal is formulated, so that the overall approach may be applied for environmentally sustainable water withdrawal management in other small streams.  相似文献   

3.
Abstract

This article addresses the critical need for a better quantitative understanding of how water resources from the Hérault River catchment in France have been influenced by climate variability and the increasing pressure of human activity over the last 50 years. A method is proposed for assessing the relative impacts of climate and growing water demand on the decrease in discharge observed at various gauging stations in the periods 1961–1980 and 1981–2010. An annual water balance at the basin scale was calculated first, taking into account precipitation, actual evapotranspiration, water withdrawals and water discharge. Next, the evolution of the seasonal variability in hydroclimatic conditions and water withdrawals was studied. The catchment was then divided into zones according to the main geographical characteristics to investigate the heterogeneity of the climatic and human dynamics. This delimitation took into account the distribution of climate, topography, lithology, land cover and water uses, as well as the availability of discharge series. At the area scale, annual water balances were calculated to understand the internal changes that occurred in the catchment between both past periods. The decrease in runoff can be explained by the decrease in winter precipitation in the upstream areas and by the increase during summer in both water withdrawals and evapotranspiration in the downstream areas, mainly due to the increase in temperature. Thus, water stress increased in summer by 35%. This work is the first step of a larger research project to assess possible future changes in the capacity to satisfy water demand in the Hérault River catchment, using a model that combines hydrological processes and water demand.
Editor Z.W. Kundzewicz  相似文献   

4.
ABSTRACT

Understanding of the effect of basin water resources utilization on lake nutrients is helpful to prevent lake eutrophication and facilitate sustainable water resources management. In this study, a lake basin dualistic water cycle system is established to identify the environmental effect of lake water. Four water utilization indicators were chosen to build a driving relationship with the lake nutrients. Three different trophic lakes in Yunnan Province, China – Dianchi, Erhai and Fuxian – were selected to demonstrate the changes in basin water utilization, runoff, nutrient loads and water-use indicators for the period 2000–2015. In addition, the driving forces of water-use indicators to nutrients (total nitrogen and total phosphorus) were analysed by a general additive model. Finally, an optimized water utilization system for each lake basin is proposed. The research provides a practical tool for water resources and environmental management in lake basins.  相似文献   

5.
ABSTRACT

Climate change may have significant consequences for water resources availability and management at the basin scale. This is particularly true for areas already suffering from water stress, such as the Mediterranean area. This work focused on studying these impacts in the Llobregat basin supplying the Barcelona region. Several climate projections, adapted to the spatiotemporal resolution of the study, were combined with a daily hydrological model to estimate future water availability. Depending on the scenario and the time period, different assessment indicators such as reliability and resilience showed a future decrease in water resources (up to 40%), with drought periods becoming more frequent. An additional uncertainty analysis showed the high variability of the results (annual water availability ranging from 147 hm3/year to 274 hm3/year), thus making accurate projections difficult. Finally, the study illustrates how climate change could be taken into account to provide adaptive measures for the future.
Editor M.C. Acreman; Associate editor J. Thompson  相似文献   

6.
Assessments of hydrological response to climatic changes are characterized by different types of uncertainties. Here, the uncertainty caused by weather noise associated with the chaotic character of atmospheric processes is considered. A technique for estimating such uncertainty in simulated water balance components based on application of the land surface model SWAP and the climate model ECHAM5 is described. The technique is applied for estimating the uncertainties in the simulated water balance components (precipitation, river runoff and evapotranspiration) of some northern river basins of Russia. It is shown that the larger the area of a basin the less the uncertainty. This dependency is smoothed by differences in natural conditions of the basins. Analysis of the spectral densities of water balance components shows that a river basin filters out high-frequency harmonics of spectral density of precipitation (corresponding to synoptic or sub-seasonal scale) during its transformation into evapotranspiration and especially into runoff.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR H. Kreibich  相似文献   

7.
Abstract

The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows).
Editor D. Koutsoyiannis

Citation Piniewski, M., Okruszko, T., and Acreman, M.C., 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrological Sciences Journal, 59 (3–4), 916–934.  相似文献   

8.
《水文科学杂志》2012,57(2):311-324
ABSTRACT

In semi-arid regions, reduced river flows present is a major challenge in water resources management. We present a new standardized contribution of rainfall to runoff index (SCRI) for evaluating changes in rainfall contribution to river flow. We employ the standardized precipitation index (SPI), standardized discharge index (SDI) and SCRI to characterize meteorological drought, hydrological drought and land-use change impacts on river flow, respectively. These indices are applied to the Mond River Basin (Iran), which is regulated by the Salman Farsi and Tangab dams since 2006. A new concept called “mirage water” is proposed that represents the reduced water delivery to downstream areas due to new developments and water withdrawals in headwater tributaries. In particular, mirage water accounts for changes in upstream water consumption between the planning phase and construction/operation life of dams. We recommend that this concept be used for communication with decision-makers and managers to clarify the need for revising dimensions of planned dams.  相似文献   

9.
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 km3/year during 1998–2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 km3/year during 1998–2002. It is the sum of the net abstraction of 250 km3/year of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/year of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.  相似文献   

10.
Abstract

Two types of monthly water balance models at basin scale are used: PE models use precipitation and potential evapotranspiration (PET) as their observed input data, whereas P models need only precipitation. Calibration proceeds by comparing model runoff and observed runoff. Calibration is entirely automatic with the exclusion of subjective elements. All models differ only by their actual evapotranspiration equations. PE models from previous papers are generalized essentially by replacing the constant evapotranspiration parameter by a periodic one, thus increasing the number of parameters by two (a “parameter” is an unknown constant to be estimated, and which is a characteristic of the river basin to be described). P models use a periodic “driving force”, which is intended to represent periodicity of hydrological phenomena, normally originating in the (unavailable) PET time series. These eight PE models and three P models are then applied to 55 river basins in 10 countries with widely diverging climates and soil conditions. A marked improvement of model performance in about one third of the basins is due to the introduction of the above mentioned periodic functions. Even when PET data are available it is sometimes useful to consider P models. P models scarcely perform less well than PE models. An engineer, wanting to try out as few models as possible on a given river basin, can restrict his attention to the optimization of two or three models. The paper is an extension of a long effort towards monthly water balance models, and is believed to give a solution in most circumstances.  相似文献   

11.
随着水资源短缺程度的加剧,可交易水权制度逐渐成为当今世界水资源管理制度发展的新方向.水资源初始产权是水资源管理的基础和前提.在干旱区内陆河流域,产权初始配置要在生态环境可持续的前提下,坚持公平、效益相结合的分配目标和配置原则.通过建立初始水权配置指标体系,对黑河流域进行实地问卷调查,在此基础上对用户调查结果进行专家判断修正,应用层次分析法研究了各分配指标的权重分布.以黑河流域张掖地区为例的界定结果表明,除上游的肃南县和山丹县外,其余各县市的实际用水量都超过了各自界定的初始水权,这种差别为水资源产权交易管理提供了现实依据,为开展流域上游的生态保护补偿提供了理论基础.  相似文献   

12.
Groundwater is a critical resource not only for human communities but also for many terrestrial, riparian, and aquatic ecosystems and species. Yet groundwater planning and management decisions frequently ignore or inadequately address the needs of these natural systems. As a consequence, ecosystems dependent on groundwater have been threatened, degraded, or eliminated, especially in arid regions. There is growing acknowledgment that governmental protections for these ecological resources are necessary, but current legal, regulatory and voluntary provisions are often inadequate. Groundwater management premised on “safe yield,” which aims to balance human withdrawals with natural recharge rates, typically provides little to no consideration for water needed by ecosystems. Alternatively, the “sustainable yield” concept aims to integrate social, economic and environmental needs for groundwater, but the complexity of groundwater systems creates substantial uncertainty about the impact that current or future groundwater withdrawals will have on ecosystems. Regardless of the legal or regulatory framework, guidance is needed to help ensure environmental water needs will be met, especially in the face of pressure to increase human uses of groundwater resources. In this paper, we describe minimum provisions for planning, managing, and monitoring groundwater that collectively can lower the risk of harm to groundwater-dependent ecosystems and species, with a special emphasis on arid systems, where ecosystems and species may be especially reliant upon and sensitive to groundwater dynamics.  相似文献   

13.
ABSTRACT

Growth in water use and threatened shortages of water have become increasingly important in the modern world system. Natural resources are exploited extensively by capitalist interests in industrially advanced nations, while the lower strata of the world system, the underdeveloped societies, are left with limited access to natural resources for their productive processes, particularly water resources. We contribute to socio-hydrological research by examining underlying socio-structural factors that play a part in the process of deteriorating conditions of global water resources. Drawing on a world-systems perspective, this study examines how socio-structural forces – world-system position, per capita beef consumption, per capita energy consumption, and urbanization – affect per capita water footprint, which includes an accounting of “virtual water” consumption. We find that per capita beef consumption and per capita energy consumption have significant positive direct effects, and the world-system position has a significant indirect and total effect on per capita water footprint.  相似文献   

14.
The choice of a river training strategy is extremely important for the Lower Yellow River (LYR). Currently, the wide-river training strategy applies in the training of the LYR. However, remarkable changes in the hydrological processes in the Yellow River basin, as well as immediate pressure from socio-economic development in the Yellow River basin, make it necessary to consider if there is a possibility to change the river training strategy from wide-river training to narrow-river training. This research investigates the impacts of different river training strategies on the LYR through numerical simulations. A one-dimensional (1-D) model was used to simulate the fluvial processes for the future 50 years and a three-dimensional (3-D) model was applied to study typical floods. The study focused on river morphology, the results show that if the present decreasing trend in both water discharge and sediment load persists, the deposition rate in the LYR will further decrease no matter what strategy is applied. Especially, narrow-river training can achieve the aim to increase the sediment transport capacity in the LYR compared with wide-river training. However, if the incoming water and sediment load recovers to the mean level of the last century, main channel shrinkage due to sedimentation inevitably occurs for both wide-river and narrow-river training. Most importantly, this study shows that narrow-river training reduces the deposition amount over the whole LYR, but it provides little help in alleviating the development of the “suspended river”. Instead, narrow-river training can cause aggradation in the transitional reach where the river pattern changes from highly wandering to meandering, further worsening the “hump deposition” there. Because of uncertainty regarding future changes in hydrological processes in the Yellow River basin, and the lack of feasible engineering measures to mitigate “suspended river” and “hump deposition” problems in the LYR, caution should be exercised with respect to changes in the river training strategy for the LYR.  相似文献   

15.
Historically, there has been a dispute over water allocation between users and policymakers in Iran's Zayandeh-Roud Basin (ZRB). In this study, we used the “System of Environmental-Economic Accounting for Water” (SEEAW) framework in combination with the hydrologic model “Soil and Water Assessment Tool” (SWAT) to achieve the water balance in ZRB. We used SEEAW to combine a wide range of water-related statistics across stakeholders and SWAT to evaluate the unknown agricultural water use. The SWAT model is calibrated based on the stream flows and crop yields in the basin. The model assess the renewable water of the basin into two components, about 363 and 70 mm as green and blue water, respectively. Also results from the physical water supply and water use tables demonstrates that the agricultural sector uses 78% of the total renewable freshwater, followed by the residential, 16%, and the industrial sector, 6%. The flows of water from source to services in ZRB are traced based on the water supply and water use tables. The flow diagram shows that 8 MCM of industrial reused water was transferred to the agricultural sector, and 137 MCM and 18 MCM of water from the wastewater treatment plants to the agricultural and industrial sectors, respectively. Furthermore, the results show that the index of the basin dependence on groundwater resources is high (61%), the value of water stress is high (0.88) and the dependence of the basin on transboundary water resources is 30%. Therefore, this method is highly beneficial for achieving a conceptual water balance in disputed basins without enough agricultural water uses data.  相似文献   

16.
ABSTRACT

To effectively manage hydrological drought, there is an urgent need to better understand and evaluate its human drivers. Using the “downstreamness” concept, we assess the role of a reservoir network in the emergence and evolution of droughts in a river basin in Brazil. In our case study, the downstreamness concept shows the effect of a network of reservoirs on the spatial distribution of stored surface water volumes over time. We demonstrate that, as a consequence of meteorological drought and recovery, the distribution of stored volumes became spatially skewed towards upstream locations, which affected the duration and magnitude of hydrological drought both upstream (where drought was alleviated) and downstream (where drought was aggravated). The downstreamness concept thus appears to be a useful entry point for spatiotemporally explicit assessments of hydrological drought and for determining the likelihood of progression from meteorological drought to a human-modified hydrological drought in a basin.  相似文献   

17.
Abstract

This paper assesses strategic water availability and use under different development pathways on a basin scale using remote sensing (RS), geographical information systems (GIS) and a spatial water budget model (SWBM). The SWBM was applied to the Upper Ing Basin in northern Thailand to investigate the spatial and temporal variations in the location of streams and water yields from different parts of the basin. The base simulation was carried out for the years 1998–2007 using a DEM and actual land-use data at 100-m resolution. The simulated stream network was compared with topographic maps under different flow conditions, which were successfully represented. The 10-year average simulated river flow rate was 1300 L/s, but it more than doubled during periods of heavy rainfall and decreased below 600 L/s in dry seasons. The total length of the streams (based on flow threshold of 25 L/s) on a typical day in the dry season differed by a factor of approx. 1.5. Agricultural water needs and possible extraction were assessed and presented by dividing the basin into 10 different zones based on the stream network. The results show that there is the potential for harvesting significant quantities of water at different spatial gradients with no initial water supply for irrigation. Monthly water yields for each zone were computed; the results varied from less than 50% to over 137% of the per hectare water yield for the entire basin. This variation was due to differences in topography and land cover. The impact of land use and climate change on streamwater availability was also studied. The basin shows very different hydrological responses. The changes in average river flow relative to the base simulation were +27.6%,??32.1%, +94% and +52.9% under deforestation, changing land use from paddy field to orchard, bare soil and increased rainfall scenarios, respectively.

Citation Bahadur KC, K. (2011) Assessing strategic water availability using remote sensing, GIS and a spatial water budget model: case study of the Upper Ing Basin, Thailand. Hydrol. Sci. J. 56(6), 994–1014.  相似文献   

18.
《水文科学杂志》2013,58(4):702-712
Abstract

The “sudestadas” are short-term hydro-meteorological phenomena that produce a “hydraulic plug”, preventing the normal drainage of the water courses in the Río de la Plata Estuary. The purpose of this study was to analyse the influence of the sudestadas on the water quality of the Lower River Luján, which discharges into the Río de la Plata Estuary (59°37′W; 34°43′S). Samplings were conducted from November 1998 to July 2001 at six sites on the lower stretch of river. Physical and chemical variables were measured and a nonparametric test was applied to each variable, grouping samples affected and non-affected by sudestadas, which further diminish the water quality of the river. The frequency and intensity of sudestadas are predicted to increase as a consequence of the Earth's warming; thus, this research suggests that the environmental risk produced by the effects of global change, will be greater.  相似文献   

19.
Abstract

The French national project IMAGINE2030 aims to assess future water availability in the Garonne River basin (southwest France) by taking account of changes in both climate and water management in the 2030s. Within this project, two mountainous drainage basins located in the Pyrenees were examined to assess the specific impact of climate change on reservoir management. The Salat River basin at Roquefort, is considered as a proxy (representative of a natural basin), whereas the Ariège River at Foix is influenced by hydropower production in winter and by water releases to sustain low flows in summer. The Cequeau rainfall–runoff model, combined with a simplified model of reservoir management operations, was calibrated on present-day conditions and forced with climate projections derived from the IPCC AR4 report. The results show that a warming climate over the basins induces a decrease in mean annual runoff, a shift to earlier snow melting in mountainous areas and more severe low-flow conditions. The simulations show a decrease in electricity generation. Under two water management scenarios (one “business-as-usual” and the other incorporating an increased downstream water demand in compliance with requirements for increased minimum flow), simulations for the Ariège River basin suggest an earlier filling of the reservoir is necessary in winter to anticipate the increased release from reservoirs in summer to support minimum flow farther downstream.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Hendrickx, F. and Sauquet, E., 2013. Impact of warming climate on water management for the Ariège River basin (France). Hydrological Sciences Journal, 58 (5), 976–993.  相似文献   

20.
ABSTRACT

With global climate change and impacts of human activity, the water cycle, which has a close relationship with local water resources, has changed rapidly. Based on different greenhouse gas emission scenarios, five relatively independent global climate models are selected from 47 CMIP5 models to simulate future climatic conditions. Data are downscaled to the local projection, with bias neutralized before applying them to the hydrological models, by which availability of future water resources are calculated for the Dongting Lake basin. The results show that the water resources of the Dongting Lake basin are likely to increase in the future, but be distributed more unevenly. All scenarios indicate that water availability will increase during the flood season and decrease during the dry season, with a prominent increase in annual discharge. The scenarios also predict that the greater the greenhouse gas emissions, the more uneven the water distribution becomes. Overall, the water resources of the Dongting Lake catchment show the same increasing and unevenly distributed trend in the future, which could be further accelerated by human activities.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号