首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
《水文科学杂志》2013,58(4):727-738
Abstract

Projected warming in equatorial Africa, accompanied by greater evaporation and more frequent heavy precipitation events, may have substantial but uncertain impacts on terrestrial hydrology. Quantitative analyses of climate change impacts on catchment hydrology require high-resolution (<50 km) climate data provided by regional climate models (RCMs). We apply validated precipitation and temperature data from the RCM PRECIS (Providing Regional Climates for Impact Studies) to a semi-distributed soil moisture balance model (SMBM) in order to quantify the impacts of climate change on groundwater recharge and runoff in a medium-sized catchment (2098 km2) in the humid tropics of southwestern Uganda. The SMBM explicitly accounts for changes in soil moisture, and partitions effective precipitation into groundwater recharge and runoff. Under the A2 emissions scenario (2070–2100), climate projections from PRECIS feature not only rises in catchment precipitation and modelled potential evapotranspiration by 14% and 53%, respectively, but also increases in rainfall intensity. We show that the common application of the historical rainfall distribution using delta factors to the SMBM grossly underestimates groundwater recharge (i.e. 55% decrease relative to the baseline period of 1961–1990). By transforming the rainfall distribution to account for changes in rainfall intensity, we project increases in recharge and runoff of 53% and 137%, respectively, relative to the baseline period.  相似文献   

2.
ABSTRACT

This paper assesses how various sources of uncertainty propagate through the uncertainty cascade from emission scenarios through climate models and hydrological models to impacts, with a particular focus on groundwater aspects from a number of coordinated studies in Denmark. Our results are similar to those from surface water studies showing that climate model uncertainty dominates the results for projections of climate change impacts on streamflow and groundwater heads. However, we found uncertainties related to geological conceptualization and hydrological model discretization to be dominant for projections of well field capture zones, while the climate model uncertainty here is of minor importance. How to reduce the uncertainties on climate change impact projections related to groundwater is discussed, with an emphasis on the potential for reducing climate model biases through the use of fully coupled climate–hydrology models.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

3.
Abstract

The water balance during a period of one year (15 October 1990–15 October 1991) was determined at an experimental site in the Areuse River delta (Switzerland). The groundwater recharge rates were found to be 36 and 33% of total precipitation according to evapotranspiration estimates based on the Primault (1962) and the Penman-Monteith methods, respectively. Variations in the water storage were obtained by weekly measurements with a neutron probe. Observed hydraulic gradients indicated a zero-flux plane between depths of 0.55 and 1.02 m that separated the infiltration zone from the zone of evapotranspiration in all seasons.  相似文献   

4.
The effect of potential climate change on groundwater‐dependent vegetation largely depends on the nature of the climate change (drying or wetting) and the level of current ecosystem dependence on groundwater resources. In south‐western Australia, climate projections suggest a high likelihood of a warmer and drier climate. The paper examines the potential environmental impacts by 2030 at the regional scale on groundwater‐dependent terrestrial vegetation (GDTV) adapted to various watertable depths, on the basis of the combined consideration of groundwater modelling results and the framework for GDTV risk assessment. The methodology was tested for the historical period from 1984 to 2007, allowing validation of the groundwater model results' applicability to such an assessment. Climate change effects on GDTV were evaluated using nine global climate models under three greenhouse gas emission scenarios by applying the climate projections to groundwater models. It was estimated that under dry climate scenarios, GDTV is likely to be under high and severe risk over more than 20% of its current habitat area. The risk is also likely to be higher under an increase in groundwater abstraction above current volumes. The significance of climate change risk varied across the region, depending on both the intensity of the change in water regime and the sensitivity of the GDTV to such change. Greater effects were projected for terrestrial vegetation dependent on deeper groundwater (6–10 m). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
气候条件的变异和流域下垫面特征的改变是影响流域蒸散耗水的重要因素。本文聚焦于1900 2008年间全球83个典型流域数据,基于Budyko水热耦合平衡方程,探究100多年间不同条件下流域蒸散耗水率(AET/P)对气候和下垫面特征变异响应关系的稳定性。结果表明:(1)从长时间尺度看,大部分流域蒸散耗水率与气候干燥指数(PET/P)和流域特征参数(n值)变异的响应关系呈现较强的时间稳定性。从短时间尺度而言,半湿润流域内蒸散耗水率对干燥指数的响应系数?(AET/P)/?(PET/P)在20世纪内持续降低。不同气候条件下蒸散耗水率对流域特征参数的响应系数?(AET/P)/?(n)的变化差异显著。分不同下垫面特征来看,低n值(n<2)流域内AET/P对n值的变化更为敏感;(2)气候条件(PET/P)是大多数湿润区内蒸散耗水率的主导因素,在干旱与半干旱流域内,下垫面特征参数(n值)对AET/P贡献最大。在湿润区内,PET/P对AET/P的贡献程度随时间小幅提升;半湿润区内PET/P对AET/P的贡献度呈下降趋势。在低n值(n<2;流域持水能力较弱)流域内,n值对AET/P的贡献更多。在...  相似文献   

6.
Announcements     
ABSTRACT

Global climate variations are expected to cause serious challenges to water resources planning and management, including an increase in sea level, abrupt changes in rainfall patterns and changes in ecosystems. This study evaluates impacts of mid-century climate variability as projected by climate models in the Haw River watershed, which contributes significantly to Jordan Lake, a major source of drinking water supply in central North Carolina, USA. The watershed-based hydrological model, Soil and Water Assessment Tool (SWAT), was successfully calibrated with very good to excellent performance. Projected precipitation and temperature information for 2040–2069 from four dynamically downscaled regional climate models (RCMs) was used to force the SWAT modeling set-up of the watershed. On a long-term basis, a 38% decrease in the precipitation in early fall is expected while spring months are expected to receive 30% higher precipitation compared to the baseline condition (1980–2009). Water yield was found to increase in spring months, with a maximum of 74% increase on average. Summer months are expected to have on average 8% higher evapotranspiration (ET) than the baseline. Analysis of the change in average monthly streamflow at the watershed outlet (which leads to Lake Jordan) shows that there might be, on average, an 80% increase in streamflow in spring months (February, March, April and May), with the greatest increase (107%) in May. In general, simulation results indicated that the hydrological response of the watershed is very sensitive to the potential variation in climate (precipitation and temperature), with precipitation being one of the decisive factors in water yield increase.
Editor Z.W. Kundzewicz Associate editor N. Verhoest  相似文献   

7.
Abstract

Wetting front instability (fingered flow) accelerates solute transport through the unsaturated zone to the groundwater table. Whether fingers widen or dissipate close to the groundwater is unclear. Water flow in a two-dimensional artificial capillary fringe below a dry layer exhibiting fingered flow was investigated. The flow diverged strongly in the wet soil, suggesting that fingers dissipate. Expressions for the finger radius in dry and wet soil were combined and adapted to a soil hydraulic property parameterization popular in numerical modelling. The modified equation provided finger radii for soils in humid and arid climates. The fingers in the arid soil were excessively wide. The finger radii were used to model solute transport, assuming fingers dissipated in the subsoil. Modelling was cumbersome for the arid climate. One shower may often be insufficient to trigger fingering in arid regions with short, heavy showers. In soils with shallow groundwater, the diverging subsoil flow determines solute leaching.  相似文献   

8.
Globally, the number of people experiencing water stress is expected to increase by millions by the end of the century. The Great Lakes region, representing 20% of the world's surface freshwater, is not immune to stresses on water supply due to uncertainties on the impacts of climate and land use change. It is imperative for researchers and policy makers to assess the changing state of water resources, even if the region is water rich. This research developed the integrated surface water-groundwater GSFLOW model and investigated the effects of climate change and anthropogenic activities on water resources in the lower Great Lakes region of Western New York. To capture a range of scenarios, two climate emission pathways and three land development projections were used, specifically RCP 4.5, RCP 8.5, increased urbanization by 50%, decreased urbanization by 50%, and current land cover, respectively. Model outputs of surface water and groundwater discharge into the Great Lakes and groundwater storage for mid- and late century were compared to historical to determine the direction and amplitude of changes. Both surface water and groundwater systems show no statistically significant changes under RCP 4.5 but substantial and worrisome losses with RCP 8.5 by mid-century and end of century. Under RCP 8.5, streamflow decreased by 22% for mid-century and 42% for late century. Adjusting impervious surfaces revealed complex land use effects, resulting in spatially varying groundwater head fluctuations. For instance, increasing impervious surfaces lowered groundwater levels from 0.5 to 3.8 m under Buffalo, the largest city in the model domain, due to reduced recharge in surrounding suburban areas. Ultimately, results of this study highlight the necessity of integrated modelling in assessing temporal changes to water resources. This research has implications for other water-rich areas, which may not be immune to effects of climate change and human activities.  相似文献   

9.
Abstract

Large-scale agricultural activities cause deterioration of groundwater resources throughout the world. This study focuses on the irrigated agricultural district of Jinghuiqu in Shaanxi, China. The objectives are to identify the main sources and processes that control nitrate transport, and to assess the impact of long-term irrigation practices on nitrate leaching. The hydrogeochemistry of major solute constituents and stable isotope ratios of NO3 ? in groundwater were used to identify historical sources of contamination and transformation processes occurring in the shallow groundwater of the Jinghuiqu irrigation district. The N-NO3 ? concentrations in groundwater ranged from 0.0 to more than 100 mg L?1 in April 1990, and from 0.47 to 42.0 mg L?1 in December 2009. Our measurements of N-NO3 ? show that the main reasons for this dramatic decline in N-NO3 ? concentrations from 1990 to 2009 are denitrification, which controls nitrogen types, together with the sharp decline of the groundwater table. The isotope ratios in collected samples showed that the source of nitrate was mainly manure, a result that corresponds with historical data showing that manure was the main nitrate source before the 1980s, and that fertilizers became dominant thereafter. A numerical model was then used to evaluate future impacts of current irrigation practices on groundwater sources. The HYDRUS-1D model was employed first to evaluate the water movement and the N-NO3 ? solute transport for a single irrigation pulse experiment carried out under field conditions, and then in evaluating the long-term impact of irrigation on N-NO3 ? leaching. Simulations showed that, after introducing irrigation, the downward drainage fluxes of N-NO3 ?, and the N-NO3 ? and N-tot concentrations increased at all depths within the 2-m soil profile. This indicates that N concentrations below 1-m depth and in the groundwater could become even more elevated with increased future irrigation.

Editor D. Koutsoyiannis

Citation Liu, X.-H., Sun, S.-J., Ji, P., and ?im?nek, J., 2013. Evaluation of historical nitrate sources in groundwater and impact of current irrigation practices on groundwater quality. Hydrological Sciences Journal, 58 (1), 1–15.  相似文献   

10.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

11.
《水文科学杂志》2013,58(3):596-605
Abstract

The potential effect of climatic change on the flow of the Upper Changjiang (or Yangtze River) above the Three Gorges, China, was simulated with the SLURP hydrological model, using ERA40 data from 1961–1990 to simulate the baseline streamflow, and employing scenario temperature and precipitation changes depicted by two global climate models: the Hadley Centre and the Canadian climate model (CCCma) for both the B2 scenario (moderate emission of greenhouse gases) and the A2 scenario (more intense emission), for the 2021–2050 and 2071–2100 time horizons. In general, temperature and precipitation changes are more pronounced for the latter than for the former period. Winter low flows will not change but summer high flow may be augmented by increased precipitation. By mid-century, temperature increase will reduce streamflow according to CCCma, but not so under the Hadley Centre scenario. By the end of the century, precipitation will be great enough to overcome the influence of warming to raise discharge from most parts of the basin. The Min and the Jinsha rivers warrant much attention, the former because of its large flow contribution and the latter because of its sensitivity to climate forcing.  相似文献   

12.
A system identification approach can be incorporated in groundwater time series analysis, revealing information concerning the local hydrogeological situation. The aim of this work was to analyse water table fluctuations in an outcrop area of the Guarani Aquifer System (GAS) in Brotas/SP, Brazil, using data from a groundwater monitoring network. The water table dynamic was modelled using continuous time series models that reference the hydrogeological system upon which they operate. The model’s climatological inputs of precipitation and evapotranspiration generate impulse response (IR) functions with parameters that can be related to the physical conditions concerning the hydrological processes involved. The interpretation of the model parameters from two sets of monitoring wells selected at different land-use sites is presented, exemplifying the effect of different water table depths and the distance to the nearest drainage location. Systematic trends of water table depths were also identified from model parameters at specific periods and related to plant development, crop harvest and land-use changes.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR L. Ruiz  相似文献   

13.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

14.
Abstract

Estimates of groundwater recharge are often needed for a variety of groundwater resource evaluation purposes. A method for estimating long-term groundwater recharge and actual evapotranspiration not known in the English literature is presented. The method uses long-term average annual precipitation, runoff, potential evaporation, and crop-yield information, and uses empirical parameter curves that depend on soil and crop types to determine long-term average annual groundwater recharge (GWR). The method is tested using historic lysimeter records from 10 lysimeters at Coshocton, Ohio, USA. Considering the coarse information required, the method provides good estimates of groundwater recharge and actual evapotranspiration, and is sensitive to a range of cropping and land-use conditions. Problems with practical application of the technique are mentioned, including the need for further testing using given parameter curves, and for incorporating parameters that describe current farming practices and other land uses. The method can be used for urban conditions, and can be incorporated into a GIS framework for rapid, large-area, spatially-distributed estimations of GWR. An example application of the method is given.  相似文献   

15.
Groundwater plays a major role in the hydrological processes driven by climate change and human activities, particularly in upper mountainous basins. The Jinsha River Basin (JRB) is the uppermost region of the Yangtze River and the largest hydropower production region in China. With the construction of artificial cascade reservoirs increasing in this region, the annual and seasonal flows are changing and affecting the water cycles. Here, we first infer the groundwater storage changes (GWSC), accounting for sediment transport in JRB, by combining the Gravity Recovery and Climate Experiment mission, hydrologic models and in situ data. The results indicate: (1) the average estimation of the GWSC trend, accounting for sediment transport in JRB, is 0.76 ± 0.10 cm/year during the period 2003 to 2015, and the contribution of sediment transport accounts for 15%; (2) precipitation (P), evapotranspiration (ET), soil moisture change, GWSC, and land water storage changes (LWSC) show clear seasonal cycles; the interannual trends of LWSC and GWSC increase, but P, runoff (R), surface water storage change and SMC decrease, and ET remains basically unchanged; (3) the main contributor to the increase in LWSC in JRB is GWSC, and the increased GWSC may be dominated by human activities, such as cascade damming and climate variations (such as snow and glacier melt due to increased temperatures). This study can provide valuable information regarding JRB in China for understanding GWSC patterns and exploring their implications for regional water management.  相似文献   

16.
Coastal wetlands are characterized by strong, dynamic interactions between surface water and groundwater. This paper presents a coupled model that simulates interacting surface water and groundwater flow and solute transport processes in these wetlands. The coupled model is based on two existing (sub) models for surface water and groundwater, respectively: ELCIRC (a three‐dimensional (3‐D) finite‐volume/finite‐difference model for simulating shallow water flow and solute transport in rivers, estuaries and coastal seas) and SUTRA (a 3‐D finite‐element/finite‐difference model for simulating variably saturated, variable‐density fluid flow and solute transport in porous media). Both submodels, using compatible unstructured meshes, are coupled spatially at the common interface between the surface water and groundwater bodies. The surface water level and solute concentrations computed by the ELCIRC model are used to determine the boundary conditions of the SUTRA‐based groundwater model at the interface. In turn, the groundwater model provides water and solute fluxes as inputs for the continuity equations of surface water flow and solute transport to account for the mass exchange across the interface. Additionally, flux from the seepage face was routed instantaneously to the nearest surface water cell according to the local sediment surface slope. With an external coupling approach, these two submodels run in parallel using time steps of different sizes. The time step (Δtg) for the groundwater model is set to be larger than that (Δts) used by the surface water model for computational efficiency: Δtg = M × Δts where M is an integer greater than 1. Data exchange takes place between the two submodels through a common database at synchronized times (e.g. end of each Δtg). The coupled model was validated against two previously reported experiments on surface water and groundwater interactions in coastal lagoons. The results suggest that the model represents well the interacting surface water and groundwater flow and solute transport processes in the lagoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
For the evaluation of policy action programs to improve groundwater quality, research institutes and governments intensively monitor nitrate concentrations in shallow or near surface groundwater. However, trend detection is often hampered by the large seasonal and multi-annual temporal variability in nitrate concentrations, especially in shallow groundwater within 0–5 m below the surface in relatively humid regions. This variability is mainly caused by variations in precipitation excess (precipitation minus evapotranspiration) that results in strong variability in groundwater recharge. The objective of this study was to understand and quantify this weather-induced variability in shallow groundwater nitrate concentrations.We present an example of measured weather related variations in shallow groundwater nitrate concentrations from De Marke, an intensively monitored experimental farm in The Netherlands. For the quantification of the weather-induced variability, concentration-indices were calculated using a 1D model for water and solute transport. The results indicate that nitrate concentrations in the upper meter of groundwater at De Marke vary between 55% and 153% of the average concentration due to meteorological variability. The concentration-index quantification method was successfully used to distinguish weather related variability from human-induced trends in the nitrate concentration monitoring data from De Marke. Our model simulations also shows that sampling from fixed monitoring wells produces less short term variability than measuring from open boreholes. In addition, using larger screen depths and longer screens filters out short term temporal variability at the cost of a more delayed detection of trends in groundwater quality.  相似文献   

18.
By applying wavelet‐based empirical orthogonal function (WEOF) analysis to gridded precipitation (P) and empirical orthogonal function (EOF) analysis to gridded air temperature (T), potential evapotranspiration (PET), net precipitation (P‐PET) and runoff (Q), this paper examines the spatial, temporal and frequency patterns of Alberta's climate variability. It was found that only WEOF‐based precipitation patterns, possibly modulated by El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation(PDO), delineated Alberta into four major regions which geographically represent northern Alberta Boreal forests, southern Alberta grasslands and Aspen Parklands and the Rocky Mountains and Foothills. The leading mode of wavelet‐based precipitation variability WPC1 showed that between 1900 and 2000, a wet climate dominated northern Alberta with significant 4–8, 11 and 25‐year periodic cycles, while the second mode WPC2 showed that between 1960 and 2000, southern Alberta grasslands were characterized by decreasing precipitation, dominated by 11‐year cycles, and the last two modes WPC3 and WPC4 were characterized by 4–7 and 25‐year cycles and both delineated regions where moisture from the Pacific Ocean penetrated the Rocky Mountains, accounted for much of the sub‐alpine climate. These results show that WEOF is superior to EOF in delineating Alberta precipitation variability to sub‐regions that more closely agree with its eco‐climate regions. Further, it was found that while WPC2 could not explain runoff variations in southern Alberta, WPC1, WPC3 and WPC4 accounted for runoff variability in their respective sub‐regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《水文科学杂志》2012,57(2):254-268
ABSTRACT

Using regionally downscaled and adjusted outputs of three global climate models (GCMs), meteorological drought analysis was accomplished across Ankara, the capital city of Turkey. To this end, standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) were projected under (representative concentration pathway) RCP4.5 and RCP8.5 greenhouse gas scenarios. In general, our results show that Ankara experienced six severe and two extreme drought events during the reference period, 1971–2000. However, the projections indicate fewer drought events for the near-future period of 2016–2040, with no potential extreme drought events. While the RCP4.5 scenario showed that dry spells will be dominant in the second half of the near-future period, the RCP8.5 scenario projected that dry spells will be evenly distributed during the entire near-future period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号