首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

This investigation proposes the use of the analytic hierarchy process (AHP) to evaluate potential sites for stream monitoring and broadcast of flood warnings. The methodology adopts variables established by the World Meteorological Organization (WMO) for the selection of stream-monitoring sites and incorporates new variables associated with the stream morphometry and hydraulics. The proposed approach quantifies subjective valuations through pairwise comparisons of judgements within the selection criteria. The uncertainty of expert judgement was assessed via Monte Carlo simulations and its effects on the resulting priority vector were analysed. This approach was applied on three main mountain watershed streams at which 11 alternative stream-gauging sites were evaluated and scored. According to our findings, six variables explain 0.711 of the total weight in the priority vector for the evaluation of a candidate site. Our approach is suitable for selecting the most stable alternative location based on a multi-criteria analysis in an inter-comparison arrangement.  相似文献   

2.
ABSTRACT

Stream gauge-based information is the foundation for many hydrological applications in a river basin including the aquatic-habitat conservation. A simple two-parameter model for routing streamflow depth (alternatively, stream–stage) hydrographs and estimating corresponding discharge hydrographs in river channels is proposed using the multilinear approach, based on Nash-type discrete-cascade model. The applicability of this model is investigated by extending its framework to the realm of compound cross-section trapezoidal channels for both in-bank and overbank flows by using 20 flood events of the Tiber River in the Umbria region of Central Italy, and subsequently comparing the simulated results with the corresponding simulations of the HEC-RAS (Hydrologic Engineering Center – River Analysis System) hydrodynamic model and observed flow depth hydrographs. The field application, comparative study, and uncertainty and sensitivity analysis of the results demonstrate that the proposed multilinear discrete Nash-cascade stage-hydrograph (MDNS) routing model has the potential for routing floods in real-world rivers and canal irrigation systems, especially in operational mode.  相似文献   

3.
Abstract

The hydrodynamic derivation of a variable parameter Muskingum method and its solution procedure for estimating a routed hydrograph were presented in Part I of this series (Perumal, 1994a). In this paper, the limitations of the method, the criterion for its applicability and its accuracy are discussed based on the assumptions used. The method is verified by routing a given hypothetical inflow hydrograph through uniform rectangular cross-section channels and comparing the results with the corresponding numerical solutions of the St. Venant equations. The stage hydrographs as computed by the method are also compared with the corresponding St. Venant solutions. It is demonstrated that the method closely reproduces the St. Venant solutions for the discharge and stage hydrographs subject to the compliance of the assumptions of the method by the routing process.  相似文献   

4.
《水文科学杂志》2013,58(4):511-524
Abstract

The design and operation of flood management systems require computation of flood hydrographs for both design floods and flood forecasting purposes, since observed data are usually inadequate for these tasks. This is particularly relevant for most developing countries, i.e. mainly for tropical catchments. One possible way of obtaining information about flood hydrographs is through the use of rainfall—runoff models. Two such models, namely the Bochum model and the Nash Cascade—Diskin Infiltration model, which are semi-distributed and lumped models, respectively, were used in the present study. These models were applied to two catchments in Kenya with drainage areas of 6.71 km2 and 26.03 km2. A set of 13 selected rainfall—runoff events was used to calibrate and validate the models. The physical parameters required by the models were derived from catchment characteristics using GIS and remote sensing data while the conceptual parameters were obtained by optimization. The flood hydrographs simulated using the parameters so derived indicated that it is possible to use the two models in this tropical environment.  相似文献   

5.
《水文科学杂志》2013,58(1):183-197
Abstract

Abstract Correct estimation of the sediment volume carried by a river is important with respect to pollution, channel navigability, reservoir filling, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. However, conventional sediment rating curves are not able to provide sufficiently accurate results. In this study, models incorporating fuzzy logic are developed as a superior alternative to the sediment rating curve technique for determining the daily suspended sediment concentration for a given river cross-section. This study provides forecasting benchmarks for sediment concentration prediction in the form of a numerical and graphical comparison between fuzzy and rating curve models. Benchmarking was based on a five-year period of continuous streamflow and sediment concentration data from the Quebrada Blanca Station operated by the United States Geological Survey (USGS). Nine different fuzzy models were developed to estimate sediment concentration from streamflow. Each fuzzy model has a different number of membership functions. The parameters of the membership functions were found using a differential evolution algorithm. The benchmark results showed that the fuzzy models were able to produce much better results than rating curve models for the same data inputs.  相似文献   

6.
Abstract

A new nonlinear stability criterion is derived for baroclinic flows over topography in spherical geometry. The stability of a wide class of exact three-dimensional nonlinear steady state solutions subject to arbitrary disturbances is established. The resonance condition, at the highest total wavenumber, for the steady state solutions and the stability criteria for baroclinic flow in the absence of topography provide the boundaries of the regions of stability in the presence of topography. The analogous results for flow on periodic or infinite beta planes incorporating non-orthogonal function large scale flows are also discussed.  相似文献   

7.
Abstract

In this paper an analytical method to study the hydrodynamic stability of simple barotropic, non-divergent flows is discussed. The method is based on the variational approach introduced by Arnold and derived from the Lyapunov stability criteria. In this context, the sufficient condition for the stability of a steady barotropic flow ψ(x,y) is obtained when dP(ψ)/dPψ = ψ, the derivative of the absolute vorticity P(ψ), is positive definite. In this case, we discuss the effect of higher derivatives dnP(ψ)/dψnψψ = ψ on the non-linear stability. Then we show that some classical examples of oceanic non-divergent flows (i.e. lee waves downstream an Island, steady flows through a Strait, the Fofonoff gyre) are stable to finite-amplitude perturbations.  相似文献   

8.
ABSTRACT

The problem of estimation of suspended load carried by a river is an important topic for many water resources projects. Conventional estimation methods are based on the assumption of exact observations. In practice, however, a major source of natural uncertainty is due to imprecise measurements and/or imprecise relationships between variables. In this paper, using the Multivariate Adaptive Regression Splines (MARS) technique, a novel fuzzy regression model for imprecise response and crisp explanatory variables is presented. The investigated fuzzy regression model is applied to forecast suspended load by discharge based on two real-world datasets. The accuracy of the proposed method is compared with two well-known parametric fuzzy regression models, namely, the fuzzy least-absolutes model and the fuzzy least-squares model. The comparison results reveal that the MARS-fuzzy regression model performs better than the other models in suspended load estimation for the particular datasets. This comparison is done based on four goodness-of-fit criteria: the criterion based on similarity measure, the criterion based on absolute errors and the two objective functions of the fuzzy least-absolutes model and the fuzzy least-squares model. The proposed model is general and can be used for modelling natural phenomena whose available observations are reported as imprecise rather than crisp.
Editor D. Koutsoyiannis; Associate editor H. Aksoy  相似文献   

9.
Yi-Ru Chen  Bofu Yu 《水文科学杂志》2013,58(10):1759-1769
Abstract

Over the past century, land-use has changed in southeast Queensland, and when coupled with climatic change, the risk of flooding has increased. This research aims to examine impacts of climate and land-use changes on flood runoff in southeast Queensland, Australia. A rainfall–runoff model, RORB, was calibrated and validated using observed flood hydrographs for one rural and one urbanized catchment, for 1961–1990. The validated model was then used to generate flood hydrographs using projected rainfall based on two climate models: the Geophysical Fluid Dynamics Laboratory Climate Model 2.1 (GFDL CM2.1) and the Conformal-Cubic Atmospheric Model (CCAM), for 2016–2045. Projected daily rainfall for the two contrasting periods was used to derive adjustment factors for a given frequency of occurrence. Two land-use change scenarios were used to evaluate likely impacts. Based on the projected rainfall, the results showed that, in both catchments, future flood magnitudes are unlikely to increase for large flood events. Extreme land-use change would significantly impact flooding in the rural catchment, but not the urbanized catchment.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

10.
ABSTRACT

The rainfall–runoff process is governed by parameters that can seldom be measured directly for use with distributed models, but are rather inferred by expert judgment and calibrated against historical records. Here, a comparison is made between a conceptual model (CM) and an artificial neural network (ANN) for their ability to efficiently model complex hydrological processes. The Sacramento soil moisture accounting model (SAC-SMA) is calibrated using a scheme based on genetic algorithms and an input delay neural network (IDNN) is trained for variable delays and hidden layer neurons which are thoroughly discussed. The models are tested for 15 ephemeral catchments in Crete, Greece, using monthly rainfall, streamflow and potential evapotranspiration input. SAC-SMA performs well for most basins and acceptably for the entire sample with R2 of 0.59–0.92, while scoring better for high than low flows. For the entire dataset, the IDNN improves simulation fit to R2 of 0.70–0.96 and performs better for high flows while being outmatched in low flows. Results show that the ANN models can be superior to the conventional CMs, as parameter sensitivity is unclear, but CMs may be more robust in extrapolating beyond historical record limits and scenario building.
EDITOR M.C. Acreman; ASSOCIATE EDITOR not assigned  相似文献   

11.
Abstract

It is shown that, even for vanishingly small diffusivities of momentum and heat, a rotating stratified zonal shear flow is more unstable to zonally symmetric disturbances than would be indicated by the classical inviscid adiabatic criterion, unless σ, the Prandtl number, = 1. Both monotonic instability, and growing oscillations ("overstability") are involved, the former determining the stability criterion and having the higher growth rates. The more σ differs from 1, the larger the region in parameter space for which the flow is stable by the classical criterion, but actually unstable.

If the baroclinity is sufficiently great for the classical criterion also to indicate instability, the corresponding inviscid adiabatic modes usually have the numerically highest growth rates. An exception is the case of small isotherm slope and small σ.

A single normal mode of the linearized theory is also, formally, a finite amplitude solution; however, no theoretical attempt is made to assess the effect of finite amplitude in general. But, in a following paper, viscous overturning (the mechanism giving rise to the sub‐classical monotonic instability when σ > 1) is shown to play an important role at finite amplitude in certain examples of nonlinear steady thermally‐driven axisymmetric flow of water in a rotating annulus. Irrespective of whether analogous mechanisms turn out to be identifiable and important in large‐scale nature, it appears then that a Prandtl‐type parameter should enter the discussion of any attempt to make laboratory or numerical models of zonally‐symmetric baroclinic geophysical or astrophysical flows.  相似文献   

12.
ABSTRACT

Prediction of design hydrographs is key in floodplain mapping using hydraulic models, which are either steady state or unsteady. The former, which require only an input peak, substantially overestimate the volume of water entering the floodplain compared to the more realistic dynamic case simulated by the unsteady models that require the full hydrograph. Past efforts to account for the uncertainty of boundary conditions using unsteady hydraulic modeling have been based largely on a joint flood frequency–shape analysis, with only a very limited number of studies using hydrological modeling to produce the design hydrographs. This study therefore presents a generic probabilistic framework that couples a hydrological model with an unsteady hydraulic model to estimate the uncertainty of flood characteristics. The framework is demonstrated on the Swannanoa River watershed in North Carolina, USA. Given its flexibility, the framework can be applied to study other sources of uncertainty in other hydrological models and watersheds.  相似文献   

13.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

14.
ABSTRACT

Evaluation of a recession-based “top-down” model for distributed hourly runoff simulation in macroscale mountainous catchments is rare in the literature. We evaluated such a model for a 3090 km2 boreal catchment and its internal sub-catchments. The main research question is how the model performs when parameters are either estimated from streamflow recession or obtained by calibration. The model reproduced observed streamflow hydrographs (Nash-Sutcliffe efficiency up to 0.83) and flow duration curves. Transferability of parameters to the sub-catchments validates the performance of the model, and indicates an opportunity for prediction in ungauged sites. However, the cases of parameter estimation and calibration excluding the effects of runoff routing underestimate peak flows. The lower end of the recession and the minimum length of recession segments included are the main sources of uncertainty for parameter estimation. Despite the small number of calibrated parameters, the model is susceptible to parameter uncertainty and identifiability problems.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Carsteanu  相似文献   

15.
Rainfall runoff hydrographs for 12 river basins ∼103 km2 in area, simulated using land surface model SWAP, are compared with analogous hydrographs obtained using hydrological models that took part in the International Model Parameter Estimation Experiment project and demonstrated the best results. All models were calibrated against data on daily river runoff from each basin over a 20-year period (1960–1979). Optimized model parameters were used to simulate runoff hydrographs for the following 19 years (1980–1998). The comparison of the modeled hydrographs for 12 basins in different calculational periods demonstrated that the SWAP model can simulate river runoff with an accuracy comparable with that of hydrological models.  相似文献   

16.
《水文科学杂志》2013,58(4):868-882
Abstract

Non-Darcian flow in a finite fractured confined aquifer is studied. A stream bounds the aquifer at one side and an impervious stratum at the other. The aquifer consists of fractures capable of transmitting water rapidly, and porous blocks which mainly store water. Unsteady flow in the aquifer due to a sudden rise in the stream level is analysed by the double-porosity conceptual model. Governing equations for the flow in fractures and blocks are developed using the continuity equation. The fluid velocity in fractures is often too high for the linear Darcian flow so that the governing equation for fracture flow is modified by Forcheimer's equation, which incorporates a nonlinear term. Governing equations are coupled by an interaction term that controls the quasi-steady-state fracture—block interflow. Governing equations are solved numerically by the Crank-Nicolson implicit scheme. The numerical results are compared to the analytical results for the same problem which assumes Darcian flow in both fractures and blocks. Numerical and analytical solutions give the same results when the Reynolds number is less than 0.1. The effect of nonlinearity on the flow appears when the Reynolds number is greater than 0.1. The higher the rate of flow from the stream to the aquifer, the higher the degree of nonlinearity. The effect of aquifer parameters on the flow is also investigated. The proposed model and its numerical solution provide a useful application of nonlinear flow models to fractured aquifers. It is possible to extend the model to different types of aquifer, as well as boundary conditions at the stream side. Time-dependent flow rates in the analysis of recession hydrographs could also be evaluated by this model.  相似文献   

17.
《水文科学杂志》2013,58(1):66-82
Abstract

An adaptive model for on-line stage forecasting is proposed for river reaches where significant lateral inflow contributions occur. The model is based on the Muskingum method and requires the estimation of four parameters if the downstream rating curve is unknown; otherwise only two parameters have to be determined. As the choice of the forecast lead time is linked to wave travel time along the reach, to increase the lead time, a schematization of two connected river reaches is also investigated. The variability of lateral inflow is accounted for through an on-line adaptive procedure. Calibration and validation of the model were carried out by applying it to different flood events observed in two equipped river reaches of the upper-middle Tiber basin in central Italy, characterized by a significant contributing drainage area. Even if the rating curve is unknown at the downstream section, the forecast stage hydrographs were found in good agreement with those observed. Errors in peak stage and time to peak along with the persistence coefficient values show that the model has potential as a practical tool for on-line flood risk management.  相似文献   

18.
19.
ABSTRACT

The instability of ideal non-divergent zonal flows on the sphere is determined numerically by the instability criterion of Arnold (Ann. Inst. Fourier 1966, 16, 319) for the sectional curvature. Zonal flows are unstable for all perturbations besides for a small set which are in approximate resonance. The planetary rotation is stable and the presence of rotation reduces the instability of perturbations.  相似文献   

20.
《水文科学杂志》2012,57(15):1932-1942
ABSTRACT

The UK Hydrological Outlook (UKHO) is a seasonal forecast of future river flows and groundwater levels. The UKHO contains both presentations of outputs from models simulating future conditions and a high-level summary. The summary is produced by an expert panel of forecasters that considers the model outputs together with other recent hydrological and meteorological information. Whilst the skill and uncertainty of the individual models have been explored and published, this study sets out to establish the performance of the high-level summary, and presents such an assessment of the river flow forecasts at the 1-month timescale. Both qualitative and quantitative assessments are presented and compared with two naïve forecasting methods. The UKHO summary is found to have a similar Gerrity skill score to a “same as last month” forecast, an outcome that generates suggestions for improvements in how the different model outputs should be considered and presented in the high-level summary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号