首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Abstract

A theoretical explanation is advanced consisting of a five stage process for the formation of polygonal ground which consists of stone borders forming regular hexagons and soil centres. One of these stages, namely the onset of convection in a porous soil between temperatures of 0°C and approximately 4-6°C, is studied analytically. Darcy's law is employed but variable permeability is allowed for and a parabolic density dependence on temperature is assumed. It is found that the theoretical predictions of the aspect ratio agree very well with field studies when a constant upper surface heat flux condition is imposed and an upwardly stratified permeability is chosen. Field study data, which agree very well with the theory, are reported in detail.  相似文献   

2.
Abstract

Surface runoff and drainage were evaluated for southern Brazilian soils subjected to different rainfall intensities and management practices. Soils received up to four applications of simulated rainfall in sequences with one application per day. Seven lysimeters, each of 1 m3 volume, were used to measure drainage volume, with measurement of initial and final water content, times at which surface runoff and lysimeter drainage began, and the volume rates of flow. At the end of the second test, soils were subjected to two levels of disturbance (denoted by low and high soil movement) by opening furrows. These cultivation treatments altered the times at which lysimeter surface runoff and drainage were initiated, the rates of surface runoff, the final infiltration and internal drainage, and the components of the water balance throughout the series of trials. Mean times at which surface runoff was initiated in lysimeters subjected to greater soil disturbance were longer than those with little soil disturbance. Final infiltration rates were greater in lysimeters with little soil disturbance. It was also found that lysimeter surface runoff generation was influenced by the state of development of maize grown in the lysimeter.
Editor D. Koutsoyiannis; Associate editor G. Mahé  相似文献   

3.
Abstract

A field experiment was conducted on a sloping grassland soil in southwest England to investigate the downslope transport of nitrogen in soil water following the application of cattle manure, slurry and inorganic fertilizer. Transport of nitrogen (N) species was monitored on hydrologically isolated plots. Manure (50 t ha?1), slurry (50 m3 ha?1) and fertilizer (250 kg N ha?1) were applied in February/March 1992. Subsurface water movement, by both matrix and preferential flow, was the dominant flow route during the experiment. Subsurface and surface nutrient flow pathways were monitored by analysing soil water and surface runoff for NO3-N, NH4-N and total N. Subsurface flow chemistry was dominated by NO3-N, with concentrations usually between 2 and 5 mg NO3 ?N dm?3. Differences between fertilizer and manure treatments and the untreated control were not significant. Significantly elevated NO3-N concentrations were observed in soil water in the buffer zone, indicating the importance of a buffer zone at least 10 m wide between manure spreading zones and an adjacent water course.  相似文献   

4.
This paper presents the attenuation relations of peak ground acceleration and spectral accelerations for rock and soil sites in the central and eastern United States (CEUS). For the bedrock site condition, 56 pairs of moment magnitude M and epicentral distance R are used to simulate ground motion, and for each pair of M and R, 550 samples of ground motion parameters are generated using a seismological model together with random vibration theory and distribution of extreme values. From the regression analyses of these data, the attenuation relations of ground motion parameters for the bedrock site are established. With the aid of appropriate site coefficients, these attenuation relations are modified for the site categories specified in the 1994 NEHRP Provisions. These attenuation relations are appropriate for the assessment of seismic hazards at far-field rock and soil sites in the CEUS.  相似文献   

5.
Changes of soil surface roughness under water erosion process   总被引:5,自引:0,他引:5       下载免费PDF全文
The objective of this study was to determine the changing characteristics of soil surface roughness under different rainfall intensities and examine the interaction between soil surface roughness and different water erosion processes. Four artificial management practices (raking cropland, artificial hoeing, artificial digging, and contour tillage) were used according to the local agriculture customs of the Loess Plateau of China to simulate different types of soil surface roughness, using an additional smooth slope for comparison purposes. A total of 20 rainfall simulation experiments were conducted in five 1 m by 2 m boxes under two rainfall intensities (0.68 and 1.50 mm min?1) on a 15° slope. During splash erosion, soil surface roughness decreased in all treatments except raking cropland and smooth baseline under rainfall intensity of 0.68 mm min?1, while increasing for all treatments except smooth baseline under rainfall intensity of 1.50 mm min?1. During sheet erosion, soil surface roughness decreased for all treatments except hoeing cropland under rainfall intensity of 0.68 mm min?1. However, soil surface roughness increased for the artificial hoeing and raking cropland under rainfall intensity of 1.50 mm min?1. Soil surface roughness has a control effect on sheet erosion for different treatments under two rainfall intensities. For rill erosion, soil surface roughness increased for raking cropland and artificial hoeing treatments, and soil surface roughness decreased for artificial digging and the contour tillage treatments under two rainfall intensities. Under rainfall intensity of 0.68 mm min?1, the critical soil surface roughness was 0.706 cm for the resistance control of runoff and sediment yield. Under rainfall intensity of 1.50 mm min?1, the critical soil surface roughness was 1.633 cm for the resistance control of runoff, while the critical soil surface roughness was 0.706 cm for the resistance control of sediment yield. These findings have important implications for clarifying the erosive nature of soil surface roughness and harnessing sloped farmland. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Remote sensing techniques are useful for agro-hydrological monitoring at the farm scale because the availability of spatially and temporally distributed data improves agricultural models for irrigation and crop yield optimization under water scarcity conditions. This research focuses on the surface water content retrieval using active microwave data. Two semi-empirical models were chosen as these showed the best performances in simulating cross and co-polarized backscatter. Thus, these models were coupled to obtain reliable assessments of both soil water content and soil roughness. The use of the coupled model enables one to avoid using roughness measured in situ. Remote sensing images and in situ data were collected between April and July 2006 within the European Space Agency-funded project AgriSAR 2006. The images data set includes L-band in HH, VV and VH polarizations acquired from the airborne E-SAR sensor, operated by the German Aerospace Centre. Results were validated using in situ soil water content and roughness measurements. The results show that reliable assessment of both soil roughness (r 2 up to ?0.8) and soil water content (r 2 ? 0.9) can be retrieved in fields characterized by low fractional coverage.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Capodici, F., Maltese, A., Ciraolo, G., La Loggia, G., and D’Urso, G., 2013. Coupling two radar backscattering models to assess soil roughness and surface water content at the farm scale. Hydrological Sciences Journal, 58 (8), 1677–1689.  相似文献   

7.
Abstract

The accuracy of six combined methods formed by three commonly-used soil hydraulic functions and two methods to determine soil hydraulic parameters based on a soil hydraulic parameter look-up table and soil pedotransfer functions was examined for simulating soil moisture. A novel data analysis and modelling approach was used that eliminated the effects of evapotranspiration so that specific sources of error among the six combined methods could be identified and quantified. By comparing simulated and observed soil moisture at six sites of the USDA Soil Climate Analysis Network, we identified the optimal soil hydraulic functions and parameters for predicting soil moisture. Through sensitivity tests, we also showed that adjusting only the soil saturated hydraulic conductivity, Ks , is insufficient for representing important effects of macropores on soil hydraulic conductivity. Our analysis illustrates that, in general, soil hydraulic conductivity is less sensitive to Ks than to the soil pore-size distribution parameter.

Editor D. Koutsoyiannis; Associate editor D. Hughes

Citation Pan, F., McKane, R.B. and Stieglitz, M., 2012. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture. Hydrological Sciences Journal, 57 (4), 723–737.  相似文献   

8.
ABSTRACT

A three-dimensional flow and temperature model was applied for a 124 km river-reservoir system from Lewis Smith Dam tailrace to Bankhead Lock & Dam, Alabama. The model was calibrated against measured water levels, temperatures, velocities and flow rates from 4 May to 3 September 2011 under small constant release (2.83 m3/s) and large intermittent releases (~140 m3/s) from an upstream reservoir. Distributions of simulated flow and temperatures and particle tracking at various locations were analyzed which revealed the complex interactions of density currents, dynamic surface waves and solar heating. Flows in the surface and bottom layers moved in both upstream and downstream directions. If there was small constant release only from Smith Dam, simulated bottom temperatures at Cordova were on average 4.8°C higher than temperatures under actual releases. The momentum generated from large releases pushed bottom density currents downstream, but the released water took several days to reach Cordova.
Editor D. Koutsoyiannis; Associate editor B. Dewals  相似文献   

9.
Gu  Fengxue  Cao  Mingkui  Wen  Xuefa  Liu  Yunfen  Tao  Bo 《中国科学:地球科学(英文版)》2006,49(2):241-251

Using data from eddy covariance measurements in a subtropical coniferous forest, a test and evaluation have been made for the model of Carbon Exchange in the Vegetation-Soil-Atmosphere (CEVSA) that simulates energy transfers and water, carbon and nitrogen cycles based on ecophysiological processes. In the present study, improvement was made in the model in calculating LAI, carbon allocation among plant organs, litter fall, decomposition and evapotranspiration. The simulated seasonal variations in carbon and water vapor flux were consistent with the measurements. The model explained 90% and 86% of the measured variations in evapotranspiration and soil water content. However, the modeled evapotranspiration and soil water content were lower than the measured systematically, because the model assumed that water was lost as runoff if it was beyond the soil saturation water content, but the soil at the flux site with abundant rainfall is often above water saturated. The improved model reproduced 79% and 88% of the measured variations in gross primary production (GPP) and ecosystem respiration (R e), but only 31% of the variations in measured net ecosystem exchange (NEP) despite the fact that the modeled annual NEP was close to the observation. The modeled NEP was generally lower in winter and higher in summer than the observations. The simulated responses of photosynthesis and respiration to water vapor deficit at high temperatures were different from measurements. The results suggested that the improved model underestimated ecosystem photosynthesis and respiration in extremely condition. The present study shows that CEVSA can simulate the seasonal pattern and magnitude of CO2 and water vapor fluxes, but further improvement in simulating photosynthesis and respiration at extreme temperatures and water deficit is required.

  相似文献   

10.
Abstract

Electromagnetic induction measurements (EM) were taken in a saline gypsiferous soil of the Saharan-climate Fatnassa oasis (Tunisia) to predict the electrical conductivity of saturated soil extract (ECe) and shallow groundwater properties (depth, Dgw, and electrical conductivity, ECgw) using various models. The soil profile was sampled at 0.2 m depth intervals to 1.2 m for physical and chemical analysis. The best input to predict the log-transformed soil salinity (lnECe) in surface (0–0.2 m) soil was the EMh/EMv ratio. For the 0–0.6 m soil depth interval, the performance of multiple linear regression (MLR) models to predict lnECe was weaker using data collected over various seasons and years (R a 2 = 0.66 and MSE = 0.083 dS m-1) as compared to those collected during the same period (R a 2 = 0.97, MSE = 0.007 dS m-1). For similar seasonal conditions, for the DgwEMv relationship, R 2 was 0.88 and the MSE was 0.02 m for Dgw prediction. For a validation subset, the R 2 was 0.85 and the MSE was 0.03 m. Soil salinity was predicted more accurately when groundwater properties were used instead of soil moisture with EM variables as input in the MLR.

Editor D. Koutsoyiannis; Associate editor K. Heal

Citation Bouksila, F., Persson, M., Bahri, A., and Berndtsson, R., 2012. Electromagnetic induction predictions of soil salinity and groundwater properties in a Tunisian Saharan oasis. Hydrological Sciences Journal, 57 (7), 1473–1486.  相似文献   

11.
Abstract

The U.B.C. Watershed Model is being used operationally for forecasting daily streamflows in 13 sub-basins of the Fraser River system which is subject to snowmelt floods from the mountain snow-packs of the Coast, Columbia and Rocky Mountains in British Columbia. The model has also been tested and adopted by the Prairie Provinces Water Board for mountain snowmelt forecasting in the Saskatchewan River system headwaters.

The model estimates snowpack accumulation and depletion and operates entirely from meteorological inputs of daily maximum and minimum temperatures and precipitation. Account is kept of soil moisture, groundwater and evapotranspiration. Facilities are available in the model for lake storages and lake routing.

The model has also been used in planning studies for the Peace River system. A 30-year sequence of missing streamflow data has been generated by the model from the measured meteorological data. Snow-packs were estimated by the model from measured valley precipitation. The model was tested against a 12-year period of measured flows and correlation coefficients of 0.95 were achieved for monthly flows.  相似文献   

12.
13.
Abstract

The study analyses a 2-year period of hourly rates of real evapotranspiration (ETr) derived from eddy covariance measurements and soil water contents at depths from 8 to 90 cm, monitored by time domain reflectometry probes at the grass-covered boundary-layer field site Falkenberg of the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory, operated by the German Meteorological Service (DWD). The ETr rates and soil water contents were compared with the results of a modelling approach consisting of the Penman-Monteith equation and the soil water balance model Hydrus-1D using a noncompensatory and a compensatory root-water uptake model. After optimization of soil hydraulic parameters by inverse modelling, using measured soil water contents as the objective function, simulated and measured model outputs showed good agreement for soil water contents above 90 cm depth and for ETr rates simulated by our modelling approaches using noncompensatory root-water uptake. The application of a compensatory root-water uptake model led to a decrease in the simulation quality for the total investigation period.

Editor Z.W. Kundzewicz

Citation Wegehenkel, M. and Beyrich, F., 2014. Modelling of hourly evapotranspiration and soil water content at the grass-covered boundary-layer field site Falkenberg, Germany. Hydrological Sciences Journal, 59 (2), 376–394.  相似文献   

14.
Abstract

Plant root systems can utilize soil water to depths of 10 m or more. Spatial pattern data of deep soil water content (SWC) at the regional scale are scarce due to the labour and time constraints of field measurements. We measured gravimetric deep SWC (DSWC) at depths of 200, 300, 400, 500, 600, 800 and 1000 cm at 382 sites across the Loess Plateau, China. The coefficient of variation was high for soil water content (SWC) in the horizontal direction (48%), but was relatively small for SWC in the vertical direction (9%). Semivariogram ranges for DSWC at different depths were between 198 and 609 km. Kriged distribution maps indicated that deep soil layers became moister along northwest to southeast transects. Multiple statistical analyses related DSWC to plant characteristics (e.g. plant age explained >21% of the variability), geographical location and altitude (8–13%), soil texture and infiltrability, evaporation zone and eco-hydrological processes (P < 0.05). Regional land management decisions can be based on our DSWC distribution data to determine land uses and plant species appropriate for the soil type and location that would maintain a stable soil water balance. Maintaining infiltrability is of great importance in this and other water-scarce regions of the world.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Wang, Y.Q., Shao, M.A., Liu, Z.P. and Warrington, D.N., 2012. Regional spatial pattern of deep soil water content and its influencing factors. Hydrological Sciences Journal, 57 (2), 265–281.  相似文献   

15.
Abstract

Time series of soil moisture-related parameters provide important insights into the functioning of soil water systems. Analysis of patterns within such time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to understand whether modelling leads to a substantial loss of information or complexity. The time series were observed at four plots in sandy soils within the USDA-ARS OPE3 experimental watershed, for a year; precipitation and evapotranspiration (ET) were measured and estimated, respectively, and used for soil water flow simulation with the HYDRUS-1D software. The information content measures are the metric entropy and the mean information gain, and complexity measures are the fluctuation complexity and the effective measure complexity. These measures were computed based on the binary encoding of soil moisture time series, and used probabilities of patterns, i.e. probabilities of joint or sequential appearance of symbol sequences. The information content of daily soil moisture time series was much smaller than that of rainfall data, and had higher complexity, indicating that soil worked essentially as an information filter. Information content and complexity decreased and increased with depth, respectively, demonstrating the increase in the information filtering action of soil. The information measures of simulated soil moisture content were close to those of the measurements, indicating the successful simulation of patterns in the data. The spatial variability of the information measures for simulated soil moisture content at all depths was less pronounced than the one of measured time series. Compared with precipitation and estimated ET, soil moisture time series had more structure and less randomness in this work. The information measures can provide useful complementary knowledge about model performance and patterns in observation and modelling results.

Citation Pan, F., Pachepsky, Y. A., Guber, A. K., & Hill, R. L. (2011) Information and complexity measures applied to observed and simulated soil moisture time series. Hydrol. Sci. J. 56(6), 1027–1039.  相似文献   

16.
Abstract

Abstract The information regarding spatial and temporal variation of soil moisture in a catchment is of utmost importance in hydrological, as well as many other studies. Point measurements from gravimetric and other methods for soil moisture determination are insufficient to understand the spatial behaviour of soil moisture in a region. Microwave remote sensing data from active sensors on board various satellites are increasingly being used to map spatial distribution of soil moisture within the 0–10 cm top surface. The northern part of India has a network of large rivers and canals and, therefore, spatial and temporal distribution of soil moisture in this region has a significant bearing on the hydrology of the region. In this paper, results on estimation of soil moisture from an ERS-2 SAR image in the catchment of the Solani River (a tributary to the River Ganga) in and around the town of Roorkee, India, have been presented. The radar backscatter coefficient for each pixel of the image has been modelled from the digital numbers of the SAR image. Gravimetric measurements have been made simultaneously during the satellite pass to determine the concurrent value of volumetric soil moisture at a large number of sample points within the satellite sweep area. The backscatter coefficient is found to vary from –30 dB to –42 dB for a variation in soil moisture from 30 to 75%. Regression analyses between volumetric soil moisture and both the digital numbers and backscatter coefficients were performed. Strong correlations between volumetric soil moisture and digital number were observed with R 2 values of 0.84, 0.75 and 0.83 for bare soil, vegetative and combined surfaces, respectively. A similar trend was observed with the relationship between backscatter and volumetric soil moisture with R 2 values of 0.60, 0.89 and 0.67 for bare soil, vegetative and combined surfaces, respectively. These results demonstrate the utilization of SAR data for estimation of spatial distribution of soil moisture in the region of the present study.  相似文献   

17.
Abstract

Proper agricultural land management strategies improve soil structural properties, thereby reducing soil loss by water erosion. This study was conducted to estimate soil losses from plots of different agricultural land management using the Water Erosion Prediction Project (WEPP) (95.7) model. The study took place in a semiarid region in Kenya. The mean annual rainfall was 694 mm. The WEPP (95.7) model was initially used to estimate total sediment loading from the catchment into a reservoir. The estimate was about 2871 t corresponding to an average sedimentation rate of 1063 t km?2 year?1, which was about 76% of the measured total sediment inflow into the reservoir. Soil losses were estimated within 10 plots on the catchment of different sizes and slopes with the following treatments: conventional tillage (hand hoeing) with maize and soybean intercropping (HOCOBE); conservation tillage (disc plough) with maize and soybean intercropping (COBEAN); conservation tillage with only maize cultivation (CNTCORN); and conservation tillage with only soybean cultivation (CNTBEAN). The soil loss reduction of COBEAN, CNTCORN and CNTBEAN relative to HOCOBE ranged between 27–47%, 16–29% and 12–25%, respectively, depending on the size and slope of the plot. In general, conservation tillage reduced soil loss relative to conventional tillage. However, with conservation tillage, the single cropping system resulted in greater soil loss than the intercropping system. In the case of single cropping with conservation tillage, the soil loss reduction for maize ranged between 4 and 9%, relative to soybean. Overall, the study showed that there would be a significant reduction of soil losses from plots if conservation tillage with an intercropping system (maize and soybean) were to be adopted on agricultural lands in semiarid regions.  相似文献   

18.
Abstract

The “thermal inertia” method to retrieve surface soil water content maps on bare or sparsely-vegetated soils is analysed. The study area is a small experimental watershed, where optical and thermal images (in day and night time) and in situ data were simultaneously acquired. The sensitivity of thermal inertia to the phase difference between incoming radiation and soil temperature is demonstrated. Thus, to obtain an accurate value of the phase difference, the temporal distance between thermographs using a three-temperature approach is evaluated. We highlight when a cosine correction of the temperature needs to be applied, depending on whether the thermal inertia formulation includes two generic acquisition times, or not. Finally, the deviation in soil water content retrieval is quantifies for given values of each parameter by performing a sensitivity analysis on the basic parameters of the thermal inertia method that are usually affected by calibration errors.

Citation Maltese, A., Bates, P.D., Capodici, F., Cannarozzo, M., Ciraolo, G., and La Loggia, G., 2013. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrological Sciences Journal, 58 (5), 1144–1161.

Editor D. Koutsoyiannis; Associate editor D. Hughes  相似文献   

19.
Abstract

The Hilhorst model was used to convert bulk electrical conductivity (σb) to pore water electrical conductivity (σp) under laboratory conditions by using the linear relationship between the soil dielectric constant (εb) and σb. In the present study, applying the linear relationship εbσb to data obtained from field capacitance sensors resulted in strong positive autocorrelations between the residuals of that regression. We were able to derive an accurate offset of the relationship εb–σb and to estimate the evolution of σp over time by including a stochastic component to the linear model, rearranging it to a time-varying dynamic linear model (DLM), and using Kalman filtering and smoothing. The offset proved to vary for each depth in the same soil profile. A reason for this might be the changes in soil temperature along the soil profile.
Editor D. Koutsoyiannis; Associate editor M.D. Fidelibus  相似文献   

20.
Abstract

Estimating groundwater recharge is essential to ensure the sustainable use of groundwater resources, particularly in arid and semi-arid regions. Soil water balances have been frequently advocated as valuable tools to estimate groundwater recharge. This article compares the performance of three soil water balance models (Hydrobal, Visual Balan v2.0 and Thornthwaite) in the Ventós-Castellar aquifer, Spain. The models were used to simulate wet and dry years. Recharge estimates were transformed into water table fluctuations by means of a lumped groundwater model. These, in turn, were calibrated against piezometric data. Overall, the Hydrobal model shows the best fit between observed and calculated levels (r2 = 0.84), highlighting the role of soil moisture and vegetation in recharge processes.

Editor D. Koutsoyiannis; Associate editor X. Chen

Citation Touhami, I., et al., 2014. Comparative performance of soil water balance models in computing semi-arid aquifer recharge. Hydrological Sciences Journal, 59 (1), 193–203.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号