首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A physically based snow-evolution modelling system (SnowModel) that includes four sub-models: MicroMet, EnBal, SnowPack, and SnowTran-3D, was used to simulate eight full-year evolutions of snow accumulation, distribution, sublimation, and surface melt from glaciers in the Zackenberg river drainage basin, in north-east Greenland. Meteorological observations from two meteorological stations were used as model inputs, and spatial snow depth observations, snow melt depletion curves from photographic time lapse, and a satellite image were used for model testing of snow and melt simulations, which differ from previous SnowModel tests methods used on Greenland glaciers. Modelled test-period-average end-of-winter snow water equivalent (SWE) depth for the depletion area differs by a maximum of 14 mm w.eq., or ∼6%, more than the observed, and modelled test-period-average snow cover extent differs by a maximum of 5%, or 0·8 km2, less than the observed. Furthermore, comparison with a satellite image indicated a 7% discrepancy between observed and modelled snow cover extent for the entire drainage basin. About 18% (31 mm w.eq.) of the solid precipitation was returned to the atmosphere by sublimation. Modelled mean annual snow melt and glacier ice melt for the glaciers in the Zackenberg river drainage basin from 1997 through 2005 (September–August) averaged 207 mm w.eq. year−1 and 1198 mm w.eq. year−1, respectively, yielding a total averaging 1405 mm w.eq. year−1. Total modelled mean annual surface melt varied from 960 mm w.eq. year−1 to 1989 mm w.eq. year−1. The surface-melt period started between mid-May and the beginning of June and lasted until mid-September. Annual calculated runoff averaged 1487 mm w.eq. year−1 (∼150 × 106 m3) (1997–2005) with variations from 1031 mm w.eq. year−1 to 2051 mm w.eq. year−1. The model simulated a total glacier recession averaging − 1347 mm w.eq. year−1 (∼136 × 106 m3) (1997–2005), which was almost equal to previous basin average hydrological water balance storage studies − 244 mm w.eq. year−1 (∼125 × 106 m3) (1997–2003). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
ABSTRACT

The impact of climate change on hydrology and water salinity of a valuable coastal wetland (Anzali) in northern Iran is assessed using daily precipitation and temperature data from 19 models of Coupled Model Inter-comparison Project Phase 5. The daily data are transiently downscaled using the Long Ashton Research Station Weather Generator to three climatic stations. The temperature is projected to increase by +1.6, +1.9 and +2.7°C and precipitation to decrease by 10.4%, 12.8% and 12.2% under representative concentration pathway (RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, respectively. The wetland hydrology and water salinity are assessed using the water balance approach and mixing equation, respectively. The upstream river flow modelled by the Soil and Water Assessment Tool is projected to reduce by up to 18%, leading to reductions in wetland volume (154 × 106 m3), area (57.47 km2) and depth (2.77 m) by 34%, 21.1% and 20.2%, respectively, under climate change, while the mean annual total dissolved solids (1675 mg/L) would increase by 49%. The reduced volume and raised salinity may affect the wetland ecology.  相似文献   

3.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

4.
ABSTRACT

Appropriate allocation of limited freshwater resources to humans and ecosystems is an important issue hampering sustainable development in mountainous regions. The Taihang Mountain Region (TMR), including the Yellow and Hai river basins, is an important water source area for the North China Plain. The distributed hydrological model Water and Energy transfer Processes in Large river basins (WEP-L) was used to simulate the water cycle processes and to summarize the temporal and spatial changes in the blue and green water in the TMR from 1956 to 2015. The results show that in the period 2011–2015 the annual average blue water decreased by 7.31 × 109 m3, while the annual average green water increased by 13.60 × 109 m3 compared to 1956–1960. At the inter-annual time scale, the blue water exhibited a downward trend while the green water exhibited an upward trend. The amount of seasonal blue water in the TMR is ranked in descending order: summer, autumn, spring and winter, while for green water, the rank is summer, spring, autumn and winter. The amounts of blue and green water are higher on the windward than on the leeward slopes. The blue water yield is generally higher in forests and grasslands than in farmland, while the green water exhibits the opposite response. A greater emphasis should be placed on the widening gap between blue water and green water due to climate warming, and on soil and water conservation measures.  相似文献   

5.
《水文科学杂志》2013,58(3):418-431
Abstract

The water balance of the closed freshwater Lake Awassa was estimated using a spreadsheet hydrological model based on long-term monthly hydrometeorological data. The model uses monthly evaporation, river discharge and precipitation data as input. The net groundwater flux is obtained from model simulation as a residual of other water balance components. The result revealed that evaporation, precipitation, and runoff constitute 131, 106 and 83 × 106 m3 of the annual water balance of the lake, respectively. The annual net groundwater outflow from the lake to adjacent basins is 58 × 106 m3. The simulated and recorded lake levels fit well for much of the simulation period (1981–1999). However, for recent years, the simulated and recorded levels do not fit well. This may be explained in terms of the combined effects of land-use change and neotectonism, which have affected the long-term average water balance. With detailed long-term hydrogeological and meteorological data, investigation of the subsurface hydrodynamics, and including the effect of land-use change and tectonism on surface water and groundwater fluxes, the water balance model can be used efficiently for water management practice. The result of this study is expected to play a positive role in future sustainable use of water resources in the catchment.  相似文献   

6.
Abstract

This paper analyses the temporal dynamics of soil water balance components in a representative recharge area of the Sierra de Gádor (Almeria, southeastern Spain) in two hydrological years. Two approaches are used to estimate daily potential recharge (PR): Approach 1 based on deriving PR from the water balance as the difference between measurements of rainfall (P) and actual evapotranspiration (E) obtained by eddy covariance; and Approach 2 with PR obtained from the dynamic pattern of the soil moisture (θ) recorded at two depths in the site's thin soil (average 0.35 m thickess). For the hydrological year 2003/04, which was slightly drier than the 30-year average, E accounted for 64% of rainfall and occurred mainly in late spring and early summer. The PR estimated by Approach 1 was 181 ± 18 mm year-1 (36% of rainfall), suggesting an effective groundwater recharge in the study area. In the unusually dry hydrological year 2004/05, E was about 215 mm year-1, close to the annual rainfall input, and allowing very little (8 ± 12 mm year-1) PR according to Approach 1. Estimation of PR based on Approach 2 resulted in PR rates lower than those found by Approach 1, because Approach 2 does not take into account the recharge that occurs through preferential flow pathways (cracks, joints and fissures) which were not monitored with the θ probes. Moreover, using Approach 2, the PR estimates differed widely depending on the time scale considered: with daily mean θ data, PR estimation was lower, especially in late spring, while θ data at 30 min resolution yielded a more reliable prediction of the fraction of total PR resulting from the downward movement of soil water by gravity.

Citation Cantón, Y., Villagarcía, L., Moro, M. J., Serrano-Ortíz, P., Were, A., Alcalá, F. J., Kowalski, A. S., Solé-Benet, A., Lázaro, R. & Domingo, F. (2010) Temporal dynamics of soil water balance components in a karst range in southeastern Spain: estimation of potential recharge. Hydrol. Sci. J. 55(5), 737–753.  相似文献   

7.
The planning and management of water resources in the Shiyang River basin, China require a tool for assessing the impact of groundwater and stream use on water supply reliabilities and improving many environment‐related problems such as soil desertification induced by recent water‐related human activities. A coupled model, integrating rule‐based lumped surface water model and distributed three‐dimensional groundwater flow model, has been established to investigate surface water and groundwater management scenarios that may be designed to restore the deteriorated ecological environment of the downstream portion of the Shiyang River basin. More than 66% of the water level among 24 observation wells have simulation error less than 1·0 m. The overall trend of the temporal changes of simulated and observed surface runoff at the Caiqi gauging station remains almost the same. The calibration was considered satisfactory. Initial frameworks for water allocation, including agricultural water‐saving projects, water diversion within the basin and inter‐basin water transfer, reducing agricultural irrigation area and surface water use instead of groundwater exploitation at the downstream were figured out that would provide a rational use of water resources throughout the whole basin. Sixteen scenarios were modelled to find out the most appropriate management strategies. The results showed that in the two selected management options, the groundwater budget at the Minqin basin was about 1·4 × 108 m3/a and the ecological environment would be improved significantly, but the deficit existed at the Wuwei basin and the number was about 0·8 × 108 m3/a. Water demand for domestic, industry and urban green area would be met in the next 30 years, but the water shortage for meeting the demand of agricultural water use in the Shiyang River basin was about 2·2 × 108 m3/a. It is suggested that more inter‐basin water transfer should be required to obtain sustainable water resource use in the Shiyang River basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In order to maintain the scenic and eco-environmental values of a lake, we need to characterize its water interactions. Shahu Lake was used as a case study to show the interactions among replenishment water, lake water and groundwater in an arid region. Shahu Lake is located in the Ningxia Hui Autonomous Region of northwest China and has an area of 13.96 km2 and an average depth of 2.2 m. The groundwater modelling software MODFLOW was used. The analysis results show that hydraulic connectivity among replenishment water, lake water and groundwater is the crucial driving factor that affects the water level in Shahu Lake. The lake water level is highly sensitive to the volume of replenishment water. The groundwater is of great importance in balancing the water level in the lake and preventing it from drying up. It was determined that 13.8 × 106 m3/yr is the optimal volume of replenishment water for Shahu Lake in order to maintain the lake level at its normal state and also to make the best use of available water resources on a long-term basis. Understanding of the water interactions can promote effective management of water resources in Shahu Lake.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR D. Hughes  相似文献   

9.
Estimation methods of eco-environmental water requirements: Case study   总被引:6,自引:0,他引:6  
With the enhancement of knowledge on the rela- tionship between water resources and ecological environment, the eco-environmental water require- ments have become an important factor in the alloca-tion of water resources[1―4]. Because of different un-derstandings on the concept, there are many estimation methods for ecological water requirements[5―7], envi-ronmental flows[8―12], instream flows[13,14], and low flows[15―17]. Most of those methods are identical in the intrinsic contents and a…  相似文献   

10.
Abstract

Leakage properties and the potential for land subsidence due to groundwater withdrawal from a multi-aquifer water supply system were investigated by applying leaky type curve and one dimensional consolidation models to drawdown data that were obtained during a pumping test experiment in an aquifer-aquitard system. The producing aquifer has transmissivity and storativity values of 5.3 × 10?3 m2 s?1 and 9.54 × 10?4 respectively. It is recharged through leakage at a rate of 5.67 × 10?8 m s?1, giving a leakage amount of more than 0.007 m3 s?1. Drainage of the aquifer-aquitard system could result in aquitard compaction of between 50 and 180 mm year?1 for pumping periods of 6 and 22 h day?1, respectively. The observed leakage has important implications for land subsidence problems and waste disposal practices in the area.  相似文献   

11.
本文以石羊河流域中下游为研究区,采用考虑生态系统恢复力(latitude of ecosystem resilience, LER)的月尺度生态需水评估方法计算1982-2020年植被月适宜生态需水量、最小生态需水量以及相应的生态缺水量,并与土壤水分特征值法(characteristic value of soil water, CVSW)进行比较,分析不同类型植被生长期的水分盈亏关系。结果表明:LER法和CVSW法计算结果相近,但LER法具有更大的生态需水阈值区间;天然降水基本可以满足植被的基本生存,但无法满足正常生长需求;LER法的适宜需水条件下,各植被生长期总体处于缺水状态,缺水严重程度排序为灌木林>其他林地>疏林地>高覆盖度草地>中覆盖度草地>有林地,全部植被生长期总适宜生态需水量为3.7×108 m3,亏缺水量为1.2×108 m3,同一植被亏缺水量基本符合春秋多、夏季少的规律;最小需水条件下,只有其他林地存在生长期缺水情况,全部植被生长期总最小生态需水量为0.8×108 m3;在缺乏土壤水分数据的干旱地区,LER法具有良好的适用性。研究结果可为石羊河流域水资源高效利用和干旱区生态系统的恢复与重建提供理论参考。  相似文献   

12.
Study on vegetation ecological water requirement in Ejina Oasis   总被引:11,自引:0,他引:11  
The Ecological Water Requirement (EWR) of desert oasis is the amount of water required to maintain a normal growth of vegetation in the special ecosystems. In this study EWR of the Ejina desert oasis is estimated through the relational equation between normalized difference vegetation index (NDVI), productivity and transpiration coefficient, which was established by a combination of the RS, GIS, GPS techniques with the field measurements of productivity. The results show that about 1.53×108 m3 water would be needed to maintain the present state of the Ejina Oasis, and the ecological water requirement would amount to 3.49×108 m3 if the existing vegetation was restored to the highest productivity level at present. Considering the domestic water requirement, river delivery loss, oasis vegetation water con-sumption, farmland water demand, precipitation recharge, etc., the draw-off discharge of the Heihe River (at Longxin Mount) should be 1.93×108―2.23 ×108 m3 to maintain the present state of the Ejina Oasis, and 4.28×108―5.17×108 m3 to make the existing vegetation be restored to the highest productiv-ity level at present.  相似文献   

13.
Abstract

Mosul Dam is one of the biggest hydraulic structures in Iraq. Its storage capacity is 11.11 × 109 m3 at a maximum operation level of 330 m a.s.l. The dam became operational in 1986 and no survey has been conducted to determine its storage capacity and establish new operational curves since this date. A topographic map of scale 1:50 000 dated 1983 was converted into triangulated irregular network (TIN) format using the ArcGIS program to evaluate the operational curves. Then the reservoir was surveyed in 2011 to establish the reduction in its storage capacity and to develop new operational curves. The results indicated that the reduction in the storage capacity of the reservoir was 14.73%. This implies that the rate of sedimentation within the reservoir was 45.72 × 106 m3 year?1. These results indicate that most of the sediment was deposited within the upper zone of the reservoir where the River Tigris enters the reservoir.

Editor D. Koutsoyiannis

Citation Issa, E.I., Al-Ansari, N., and Knutsson, S., 2013. Sedimentation and new operational curves for Mosul Dam, Iraq. Hydrological Sciences Journal, 58 (7), 1456–1466.  相似文献   

14.
Glacial retreat and the thawing of permafrost due to climate warming have altered the hydrological cycle in cryospheric‐dominated watersheds. In this study, we analysed the impacts of climate change on the water budget for the upstream of the Shule River Basin on the northeast Tibetan Plateau. The results showed that temperature and precipitation increased significantly during 1957–2010 in the study area. The hydrological cycle in the study area has intensified and accelerated under recent climate change. The average increasing rate of discharge in the upstream of the Shule River Basin was 7.9 × 106 m3/year during 1957–2010. As the mean annual glacier mass balance lost ?62.4 mm/year, the impact of glacier discharge on river flow has increased, especially after the 2000s. The contribution of glacier melt to discharge was approximately 187.99 × 108 m3 or 33.4% of the total discharge over the study period. The results suggested that the impact of warming overcome the effect of precipitation increase on run‐off increase during the study period. The evapotranspiration (ET) increased during 1957–2010 with a rate of 13.4 mm/10 years. On the basis of water balance and the Gravity Recovery and Climate Experiment and the Global Land Data Assimilation System data, the total water storage change showed a decreasing trend, whereas groundwater increased dramatically after 2006. As permafrost has degraded under climate warming, surface water can infiltrate deep into the ground, thus changing both the watershed storage and the mechanisms of discharge generation. Both the change in terrestrial water storage and changes in groundwater have had a strong control on surface discharge in the upstream of the Shule River Basin. Future trends in run‐off are forecasted based on climate scenarios. It is suggested that the impact of warming will overcome the effect of precipitation increase on run‐off in the study area. Further studies such as this will improve understanding of water balance in cold high‐elevation regions.  相似文献   

15.
The environment of Bosten Lake in the Mid-Eastern Yanqi Basin (MEYB), an arid inland area in northwest China, has deteriorated greatly due to increasing groundwater exploitation and changes in the interactions between groundwater and surface water. This study intended to simulate the spatio-temporal variability of groundwater and surface water across the entire MEYB over the period 2000–2013. The applicable groundwater flow model and mass balance calculation method for river water were constructed to evaluate the change in groundwater recharged by and discharged to different segments of the Kaidu River. Simulation results show that the entire river seepage in the MEYB increased from 1.05 to 6.17 × 108 m3/year between 2000 and 2013. The increasing river seepage, induced by increasing groundwater exploitation, plays the most important role in the water level decline in the downstream reaches of the Kaidu River and in Bosten Lake. This implies that the current utilization of groundwater resources in the MEYB is unsustainable.  相似文献   

16.
Submarine groundwater discharges (SGD) were investigated in a marine watershed in south‐eastern Korea using water budget analysis and a 222Rn mass balance model. Multi‐layered TOPMODEL added hydrological assumption was used to estimate groundwater components in the water budget analysis. Field observations of soil moisture, rainfall, runoff and groundwater fluctuations were used for calibration and validation of the hydrologic model. Based on observed hydrological data and terrain analyses, parameters for the hydrologic model were delineated and used to describe several hydrologic responses in the watershed. SGD estimations by 222Rn mass balance method were also performed at Il‐Gwang bay in July, 2010, and May, June, July and Nov. 2011. The estimated groundwater through hydrologic modeling and water balance analysis was 1.3x106 m3/year, which rapidly increased during typhoon season due to heavy rainfall and permeable geologic structure. The estimated groundwater was approximately 3.7–27.1% of SGD as evaluated by 222Rn mass balance method ranges 3.44 and 17.45 m3m?2year?1. Even though SGD is predominantly influenced by tide fluctuation, the head gradient (difference) from hydrologic processes associated with heavy rainfalls can also have extra significant influences. Comprehensive understanding of SGD evaluation can be improved through a simultaneous application of both these approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The quantification of natural recharge rate is a prerequisite for efficient and sustainable groundwater resources management. Since groundwater is the only source of water supply in the West Bank, it is of utmost importance to estimate the rate of replenishment of the aquifers. The chloride mass-balance method was used to estimate recharge rates at different sites representing the three groundwater basins of the Mountain Aquifer in the West Bank. The recharge rate for the Eastern Basin was calculated as between 130.8 and 269.7 mm/year, with a total average replenishment volume of 290.3 × 106 m3/year. For the Northeastern Basin, the calculated recharge rate ranged between 95.2 and 269.7 mm/year, with a total average recharge volume of 138.5 × 106 m3/year. Finally, the recharge rate for the Western Basin was between 122.6 and 323.6 mm/year, with a total average recharge volume of 324.9 × 106 m3/year. The data reveal a replenishment potential within the estimated replenishment volumes of previous studies for the same area. Also, the range was between 15 and 50% of total rainfall, which is still within the range of previous studies. The geological structure and the climate conditions of the western slope were clearly play an important role in the increment of total volume. In some cases, such as the geological formations in the Northeastern Basin, the interaction between Eocene and Senonian chalk formations result in minimum recharge rates.

Citation Marei, A., Khayat, S., Weise, S., Ghannam, S., Sbaih, M. & Geyer, S. (2010) Estimating groundwater recharge using the chloride mass-balance method in the West Bank, Palestine. Hydrol. Sci. J. 55(5), 780–791.  相似文献   

18.
Annual export of 11 major and trace solutes for the Yukon River is found to be accurately determined based on summing 42 tributary contributions. These findings provide the first published estimates of tributary specific distribution of solutes within the Yukon River basin. First, we show that annual discharge of the Yukon River can be computed by summing calculated annual discharges from 42 tributaries. Annual discharge for the tributaries is calculated from the basin area and average annual precipitation over that area using a previously published regional regression equation. Based on tributary inputs, we estimate an average annual discharge for the Yukon River of 210 km3 year–1. This value is within 1% of the average measured annual discharge at the U.S. Geological Survey gaging station near the river terminus at Pilot Station, AK, for water years 2001 through 2005. Next, annual loads for 11 solutes are determined by combining annual discharge with point measurements of solute concentrations in tributary river water. Based on the sum of solutes in tributary water, we find that the Yukon River discharges approximately 33 million metric tons of dissolved solids each year at Pilot Station. Discharged solutes are dominated by cations calcium and magnesium (5.65 × 109 and 1.42 × 109 g year–1) and anions bicarbonate and sulphate (17.3 × 109 and 5.40 × 109 g year–1). These loads compare well with loads calculated independently at the three continuous gaging stations along the Yukon River. These findings show how annual solute yields vary throughout a major subarctic river basin and that accurate estimates of total river export can be determined from calculated tributary contributions. Copyright © 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

19.
The lack of adequate field measurements often hampers the construction and calibration of rainfall‐runoff models over many of the world's watersheds. We adopted methodologies that rely heavily on readily available remote sensing datasets as viable alternatives for assessing, managing, and modelling of such remote and inadequately gauged regions. The Soil and Water Assessment Tool was selected for continuous (1998–2005) rainfall‐runoff modelling of one such area, the northeast part of the Pishin Lora basin (NEPL). Input to the model included satellite‐based Tropical Rainfall Measuring Mission precipitation data, and modelled runoff was calibrated against satellite‐based observations, the latter included: (i) monthly estimates of the water volumes impounded by the Khushdil Khan (latitude 30°40′N, longitude 67°40′E), and the Kara Lora (latitude 30°34′N, longitude 66°52′E) reservoirs, and (ii) inferred wet versus dry conditions in streams across the NEPL. Calibrations were also conducted against observed flow reported from the Burj Aziz Khan station at the NEPL outlet (latitude 30°20′N; longitude 66°35′E). Model simulations indicate that (i) average annual precipitation (1998–2005), runoff and recharge in the NEPL are 1300 × 106 m3, 148 × 106 m3, and 361 × 106 m3, respectively; (ii) within the NEPL watershed, precipitation and runoff are high for the northeast (precipitation: 194 mm/year; runoff: 38 × 106 m3/year) and northwest (134 mm/year; 26 × 106 m3/year) basins compared to the southern basin (124 mm/year; 8 × 106 m3/year); and (3) construction of delay action dams in the northeast and northwest basins could increase recharge from 361 × 106 m3/year up to 432 × 106 m3/year and achieve sustainable extraction. The adopted methodologies are not a substitute for traditional approaches, but they could provide first‐order estimates for rainfall, runoff, and recharge in the arid and semi‐arid parts of the world that are inaccessible and/or lack adequate coverage with field data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Gully erosion is a major cause of soil loss and severe land degradation in sub-humid Ethiopia. The objective of this study was to investigate the role and the effect of subsurface water level change on gully headcut retreat, gully formation and expansion in high rainfall tropical regions in the Ethiopian highlands. During the rainy seasons of 2017–2019, the expansion rate of 16 fixed gullies was measured and subsurface water levels were measured by piezometers installed near gully heads. During the study period, headcut retreats ranged from 0.70 to 2.35 m, with a mean value of 1.49 ± 0.56 m year−1, and average depth of the surface water level varied between 1.12 and 2.82 m, with a mean value of 2.62 m. Gully cross-section areas ranged from 2.90 to 20.90 m2, with an average of 9.31 ± 4.80 m2. Volumetric retreat of gully headcuts ranged from 4.49 to 40.55 m3 and averaged 13.34 ± 9.10 m3. Soil loss from individual gullies ranged from 5.79 to 52.31 t year−1 and averaged 17.21 ± 11.74 t year−1. The headcut retreat rate and sediment yield were closely related over the three study seasons. Elevated subsurface water levels facilitated the slumping of gully banks and heads, causing high sediment yield. When the soil was saturated, bank collapse and headcut retreat were favoured by the combination of elevated subsurface water and high rainfall. This study indicates that area exclosures are effective in controlling subsurface water level, thus reducing gully headcut retreat and associated soil loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号