共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
Preferential flow is known to influence hillslope hydrology in many areas around the world. Most research on preferential flow has been performed in temperate regions. Preferential infiltration has also been found in semi‐arid regions, but its impact on the hydrology of these regions is poorly known. The aim of this study is to describe and quantify the influence of preferential flow on the hillslope hydrology from small scale (infiltration) to large scale (subsurface stormflow) in a semi‐arid Dehesa landscape. Precipitation, soil moisture content, piezometric water level and discharge data were used to analyse the hydrological functioning of a catchment in Spain. Variability of soil moisture content during the transition from dry to wet season (September to November) within horizontal soil layers leads to the conclusion that there is preferential infiltration into the soils. When the rainfall intensity is high, a water level rapidly builds up in the piezometer pipes in the area, sometimes even reaching soil surface. This water level also drops back to bedrock within a few hours (under dry catchment conditions) to days (under wet catchment conditions). As the soil matrix is not necessarily wet while this water layer is built up, it is thought to be a transient water table in large connected pores which drain partly to the matrix, partly fill up bedrock irregularities and partly drain through subsurface flow to the channels. When the soil matrix becomes wetter the loss of water from macropores to the matrix and bedrock decreases and subsurface stormflow increases. It may be concluded that the hillslope hydrological system consists of a fine matrix domain and a macropore domain, which have their own flow characteristics but which also interact, depending on the soil matrix and macropore moisture contents. The macropore flow can result in subsurface flow, ranging from 13% contribution to total discharge for a large event of high intensity rainfall or high discharge to 80% of total discharge for a small event with low intensity rainfall or low discharge. During large events the fraction of subsurface stormflow in the discharge is suppressed by the large amount of surface runoff. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
4.
Conventional roughness–resistance relationships developed for pipe and open‐channel flows cannot accurately describe shallow overland flows over natural rough surfaces. This paper develops a new field methodology combining terrestrial laser scanning (TLS) and overland flow simulation to provide a high‐resolution dataset of surface roughness and overland flow hydraulics as simulated on natural bare soil surfaces. This method permits a close examination of the factors controlling flow velocity and a re‐evaluation of the relationship between surface roughness and flow resistance. The aggregate effect of flow dynamics, infiltration and depression storage on retarding the passage of water over a surface is important where runoff‐generating areas are distant from well‐defined channels. Experiments to separate these effects show that this ‘effective resistance’ is dominated by surface roughness. Eight measurements of surface roughness are found to be related to flow resistance: standard deviation of elevations, inundation ratio, pit density (measured both perpendicular and parallel to the flow direction), slope, median depth, skewness of the depth distribution and frontal area. Hillslope position is found to affect the significant roughness measures. In contrast, infiltration rate has little effect on the velocity of water fronts advancing over the soil surfaces examined here and the effect of depression storage is limited. Overland flow resistance is depth dependent where complex microtopographic structures are progressively inundated. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
Frauke K. Barthold Benjamin L. Turner Helmut Elsenbeer Alexander Zimmermann 《水文研究》2017,31(5):1018-1033
Stormflow generation in headwater catchments dominated by subsurface flow has been studied extensively, yet catchments dominated by surface flow have received less attention. We addressed this by testing whether stormflow chemistry is controlled by either (a) the event‐water signature of overland flow, or (b) the pre‐event water signature of return flow. We used a high‐resolution hydrochemical data set of stormflow and end‐members of multiple storms in an end‐member mixing analysis to determine the number of end‐members needed to explain stormflow, characterize and identify potential end‐members, calculate their contributions to stormflow, and develop a conceptual model of stormflow. The arrangement and relative positioning of end‐members in stormflow mixing space suggest that saturation excess overland flow (26–48%) and return flow from two different subsurface storage pools (17–53%) are both similarly important for stormflow. These results suggest that pipes and fractures are important flow paths to rapidly release stored water and highlight the value of within‐event resolution hydrochemical data to assess the full range and dynamics of flow paths. 相似文献
6.
Modelling soil erosion requires an equation for predicting the sediment transport capacity by interrill overland flow on rough surfaces. The conventional practice of partitioning total shear stress into grain and form shear stress and predicting transport capacity using grain shear stress lacks rigour and is prone to underestimation. This study therefore explores the possibility that inasmuch as surface roughness affects flow hydraulic variables which, in turn, determine transport capacity, there may be one or more hydraulic variables which capture the effect of surface roughness on transport capacity suffciently well for good predictions of transport capacity to be achieved from data on these variables alone. To investigate this possibility, regression analyses were performed on data from 1506 flume experiments in which discharge, slope, water temperature, rainfall intensity, and roughness size, shape and concentration were varied. The analyses reveal that 89·8 per cent of the variance in transport capacity can be accounted for by excess flow power and flow depth. Including roughness size and concentration in the regression improves that explained variance by only 3·5 per cent. Evidently, flow depth, when used in combination with excess flow power, largely captures the effect of surface roughness on transport capacity. This finding promises to simplify greatly the task of developing a general sediment equation for interrill overland flow on rough surfaces. Copyright © 1998 John Wiley & Sons, Ltd. 相似文献
7.
The acceleration of saltating grains by overland flow causes momentum to be transferred from the flow to the grains, thereby increasing flow resistance and bed roughness. To assess the impact of saltating sediment on overland flow hydraulics, velocity profiles in transitional and turbulent flows on a fixed sand-covered bed were measured using hot-film anemometry. Five discharges were studied. At each discharge, three flows were measured: one free of sediment, one with a relatively low sediment load, and one with a relatively high sediment load. In these flows from 83 to 90 per cent of the sediment was travelling by saltation. As a result, in the sediment-laden flows the near-bed velocities were smaller and the velocity profiles steeper than those in the equivalent sediment-free flows. Sediment loads ranged up to 87·0 per cent of transport capacity and accounted for as much as 20·8 per cent of flow resistance (measured by the friction factor) and 89·7 per cent of bed roughness (measured by the ratio of the roughness length to median grain diameter). It is concluded that saltating sediment has a considerable impact on overland flow hydraulics, at least on fixed granular beds. Saltation is likely to have a relatively smaller effect on overland flow on natural hillslopes and agricultural fields where form and wave resistance dominate. Still, saltation is generally of greater significance in overland flow than in river flow, and for this reason its effect on overland flow hydraulics is deserving of further study. © 1998 John Wiley & Sons, Ltd. 相似文献
8.
Surface coal mining has altered land cover, near‐surface geologic structure, and hydrologic processes of large areas in central Appalachia, USA. These alterations are associated with changes in water quality such as elevated total‐dissolved solids, which is usually measured via its surrogate, specific conductance (SC). The SC of valley fill effluent streams is a function of fill construction methods, materials, and age; yet hydrologic studies that relate these variables to water quality are sparse due to the difficulty of conducting traditional hydrologic studies in mined landscapes. We used electrical resistivity imaging (ERI) to visualize the subsurface geologic structure and hydrologic flow paths within a valley fill. ERI is a noninvasive geophysical technique that maps spatiotemporal changes in resistivity of the subsurface. We paired ERI with artificial rainfall experiments to track infiltrated water as it moved through the valley fill. Results indicate that ERI can be used to identify subsurface geologic structure and track advancing wetting fronts or preferential flow paths. Our results suggest that the upper portion of the fill contains significant fines, whereas the deeper profile is primarily large rocks and void spaces. Water tended to pond on the surface of compacted areas until it reached preferential flow paths, where it appeared to infiltrate quickly down to >15 m depth in 75 min. ERI applications can improve understanding of how fill construction techniques influence subsurface water movement, and in turn may aid in the development of valley fill construction methods to reduce water quality effects. 相似文献
9.
Alessio Nicosia Costanza Di Stefano Vincenzo Pampalone Vincenzo Palmeri Vito Ferro Mark A. Nearing 《水文研究》2020,34(9):2048-2056
Overland flow, sediments, and nutrients transported in runoff are important processes involved in soil erosion and water pollution. Modelling transport of sediments and chemicals requires accurate estimates of hydraulic resistance, which is one of the key variables characterizing runoff water depth and velocity. In this paper, a new theoretical power–velocity profile, originally deduced neglecting the impact effect of rainfall, was initially modified for taking into account the effect of rainfall intensity. Then a theoretical flow resistance law was obtained by integration of the new flow velocity distribution. This flow resistance law was tested using field measurements by Nearing for the condition of overland flow under simulated rainfall. Measurements of the Darcy–Weisbach friction factor, corresponding to flow Reynolds number ranging from 48 to 194, were obtained for simulated rainfall with two different rainfall intensity values (59 and 178 mm hr−1). The database, including measurements of flow velocity, water depth, cross-sectional area, wetted perimeter, and bed slope, allowed for calibration of the relationship between the velocity profile parameter Γ, the slope steepness s, and the flow Froude number F, taking also into account the influence of rainfall intensity i. Results yielded the following conclusions: (a) The proposed theoretical flow resistance equation accurately estimated the Darcy–Weisbach friction factor for overland flow under simulated rainfall, (b) the flow resistance increased with rainfall intensity for laminar overland flow, and (c) the mean flow velocity was quasi-independent of the slope gradient. 相似文献
10.
The Amazon basin covers an area of roughly 7 × 106 km2 and encompasses diverse soil – landscape types with potentially differing hydrological behaviour. This study was conducted in the Ultisol landscape of the western Amazon basin in Peru. Processes of stormflow generation were investigated on an event basis in a first‐order rainforest catchment to establish a causal link between soil physical and precipitation characteristics, hillslope flowpaths and stormflow hydrograph attributes. A sharp decrease in soil hydraulic conductivity with depth and high rainfall intensity and frequency favour rapid near‐surface flowpaths, mainly in the form of saturation‐excess overland flow and return flow. The latter results in an almost random occurrence of overland flow, with no obvious topographic control. Hillslope flowpaths do not vary much with respect to the hydrograph attributes time of rise, response time, lag time and centroid lag time. They have the same response time as streamflow, but a somewhat lower time of rise and significantly shorter lag times. The recession constant for hillslope hydrographs is about 10 min, in contrast to the streamflow recession constants of 28, 75 and 149 min. Stormflow generation in this Ultisol rainforest catchment differs strongly from that reported for Oxisol rainforest catchments. These two soilscapes may define a spectrum of possible catchment hydrological behaviour in the Amazon basin. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
11.
《水文科学杂志》2013,58(4):626-641
Abstract An analytical solution of planar flow in a sloping soil layer described by the linearized extended Boussinesq equation is presented. The solution consists of the sum of steady-state and transient-series solutions, the latter in a separation-of-variables form, and can satisfy an arbitrary initial condition via collocation; this feature reduces the number of series terms, making the solution efficient. Key parameter is the dimensionless linearization depth η o (R), R being the dimensionless recharge. The variable η o (R), not the slope, characterizes the flow as kinematic or diffusive, and R ≈ 0.2 demarcates the two regimes. The transient series converges rapidly for large η o (large R, near-diffusive flow) and slowly as η o → 0 (kinematic flow). The quasi-steady (QS) state method of Verhoest & Troch is also analysed and it is shown that the QS depth profiles approximate the transient ones well, only if Δt exceeds a system-dependent transition time between flow states (possibly >>1 day). In an application example for a 30-day recharge series, the QS solution differs from the transient one by as much as 20% (RMSE = 15%), does not track recharge changes as well and fails to conserve mass. 相似文献
12.
This study examines how the sediment transport capacity of interrill overland flow varies with stone cover and stone size at two flow intensities. Six series of flume experiments were conducted on two slopes (2° and 10°) with stones of three sizes (28·0, 45·5 and 91·3 mm) serving as roughness elements. Bed sediment size, water discharge and simulated rainfall intensity were the same in all experiments. It was found (1) that transport capacity is positively related to stone size, with the relation becoming stronger as stone cover increases and flow intensity decreases; and (2) that transport capacity is negatively related to stone cover at the high flow intensity and curvilinearly related to stone cover at the low flow intensity. The curvilinear relations are concave‐upward with the lowest transport capacities occurring at stone covers between 0·40 and 0·60. The highest transport capacities are found at stone covers of 0 and 1, with the transport capacity being greater at the former stone cover than at the latter. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
13.
Stephen J Birkinshaw 《水文研究》2008,22(10):1419-1430
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
14.
Rasmiaditya Silasari Juraj Parajka Camillo Ressl Peter Strauss Günter Blöschl 《水文研究》2017,31(21):3610-3627
Mapping saturation areas during rainfall events is important for understanding the dynamics of overland flow. In this study, we evaluate the potential of high temporal resolution time‐lapse photography for mapping the dynamics of saturation areas (i.e., areas where water is visually ponding on the surface) on the hillslope scale during natural rainfall. We take 1 image per minute over a 100 × 15 m2 depression area on an agricultural field in the Hydrological Open Air Laboratory, Austria. The images are georectified and classified by an automated procedure, using grey intensity as a threshold to identify saturation area. The optimum threshold T is obtained by comparing saturation areas from the automated analysis with the manual analysis of 149 images. T is found to be highly correlated with an image brightness characteristic defined as the greyscale image histogram mode M (Pearson correlation r = 0.91). We estimate T as T = M + C where C is a calibration parameter assumed to be constant during each event. The automated procedure estimates the total saturation area close to the manual analysis with mean normalized root mean square error of 9% and 21% if C is calibrated for each event and taken constant for all events, respectively. The spatial patterns of saturation are estimated with a geometric mean accuracy index of 94% as compared to the manual analysis of the same photos. The patterns are tested against field observations for one date as a preliminary demonstration, which yields a root mean square error of the shortest distance between the measured boundary points and the automatically classified boundary as 23 cm. The usefulness of the patterns is illustrated by exploring run‐off generation processes of an example event. Overall, the proposed classification method based on grey intensity is found to process images with highly varying brightnesses well. It is more efficient than the manual tracing for a large number of images, which allows the exploration of surface flow processes at high temporal resolution. 相似文献
15.
Runoff from boreal hillslopes is often affected by distinct soil boundaries, including the frozen boundary and the organic‐mineral boundary (OMB), where highly porous and hydraulically conductive organic material overlies fine‐grained mineral soils. Viewed from the surface, ground cover appears as a patchwork on sub‐meter scales, with thick, moss mats interspersed with lichen‐covered, silty soils with gravel inclusions. We conducted a decameter‐scale subsurface tracer test on a boreal forest hillslope in interior Alaska to quantify locations and mechanisms of transport and storage in these soils, focusing on the OMB. A sodium bromide tracer was added as a slug addition to a pit and sampled at 40 down‐gradient wells, screened primarily at the OMB and within a 7 × 12 m well field. We maintained an elevated head in the injection pit for 8.5 hr to simulate a storm. Tracer breakthrough velocities ranged from <0.12 to 0.93 m hr?1, with the highest velocities in lichen‐covered soils. After 12 hr and cessation of the elevated head, the tracer coalesced and was only detected in thick mosses at a trough in the OMB. By 24 hr, approximately 17% of the tracer mass could be accounted for. The majority of the mass loss occurred between 4 and 12 hr, while the tracer was in contact with lichen‐covered soils, which is consistent with tracer transport into deeper flow paths via preferential flow through discrete gravelly areas. Slow breakthroughs suggest that storage and exchange also occurred in shallow soils, likely related to saturation and drainage in fine‐grained mineral soils caused by the elevated hydraulic head. These findings highlight the complex nature of storage and transmission of water and solutes from boreal hillslopes to streams and are particularly relevant given rapid changes to boreal environments related to climate change, thawing permafrost and increasing fire severity. 相似文献
16.
Tomáš Vichta;Jan Deutscher;Ondřej Hemr;Gabriela Tomášová;Nikola Žižlavská;Martina Brychtová;Aleš Bajer;Manoj Kumar Shukla; 《水文研究》2024,38(6):e15216
In this study, we investigate the combined effect of different rainfall-runoff event types and antecedent soil moisture (ASM) on runoff processes in the headwater elementary discharge area of a small forested upland catchment. The study focuses on (i) the relationship between soil moisture thresholds and runoff generation; (ii) the combined effect of ASM and tree vicinity and (iii) the relationship between different rainfall-runoff event types and different types of runoff (baseflow and stormflow). The results suggest that ASM has a strong impact on local runoff generation processes. Soil water content (35%–36%) threshold exceedance was related to stormflow runoff generation caused by the activation of quick preferential flow paths in the soil during storm events, especially in the upper and the deepest soil layers. At the same time, unexpected non-linear increases in baseflow runoff ratios were documented during dry, precipitation-free, periods and when the 31%–34% soil moisture threshold was exceeded, presumably due to the hydrological connection of farther slope areas during these conditions. Multiple stormflow periods, which exhibited the lowest runoff coefficient, were the most significant events in terms of water retention and soil water recharge due to increased vertical hydrological connectivity enabling more rapid transport to deeper soil layers. However, this rainfall type occurred least often over the study period. The important role of forest stands (individual trees) in creating spatial patterns of soil moisture and preferential infiltration paths to deeper soil layers was also confirmed. These results contribute towards a better conceptualisation of hydrological behaviour in elementary headwater discharge areas and highlight the potential dangers associated with expected increases in extreme weather events. 相似文献
17.
18.
Preferred infiltration is mainly perceived as vertically down whereas subsurface storm flow is thought to occur parallel to slopes. The transition from vertical to lateral flow in a layered hillslope soil is the focus of the contribution. Transient flow is assumed to move as a wetting front. Three time‐domain reflectometry (TDR) wave‐guides, each 0·15 m long, were mounted in the shape of a truncated tetrahedron with its peak pointing down. Each wave‐guide focuses the front velocity along its axis. The three front‐velocity vectors are decomposed into their x, y and z components, which are then assembled to the resultant velocity vector. The volume density flux of preferred flow is the product of the front velocity and the mobile water content. The latter is the amplitude of transient soil moisture measured with each wave‐guide. The resultant vector of the volume flux density is computed similarly to the velocity vector. The experimental approach allows for the rapid assessment of transient flows without relying on the variation of water potentials. The experiments indicate that the directions of the resultant vectors of velocity and volume flux density can be estimated if the moisture variations of the three TDR wave‐guides are strongly correlated during the passing of the wetting front. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
19.
The effect of bedrock permeability on subsurface stormflow initiation and the hillslope water balance is poorly understood. Previous hillslope hydrological studies at the Panola Mountain Research Watershed (PMRW), Georgia, USA, have assumed that the bedrock underlying the trenched hillslope is effectively impermeable. This paper presents a series of sprinkling experiments where we test the bedrock impermeability hypothesis at the PMRW. Specifically, we quantify the bedrock permeability effects on hillslope subsurface stormflow generation and the hillslope water balance at the PMRW. Five sprinkling experiments were performed by applying 882–1676 mm of rainfall over a ~5·5 m × 12 m area on the lower hillslope during ~8 days. In addition to water input and output captured at the trench, we measured transpiration in 14 trees on the slope to close the water balance. Of the 193 mm day?1 applied during the later part of the sprinkling experiments when soil moisture changes were small, <14 mm day?1 was collected at the trench and <4 mm day?1 was transpired by the trees, with residual bedrock leakage of >175 mm day?1 (91%). Bedrock moisture was measured at three locations downslope of the water collection system in the trench. Bedrock moisture responded quickly to precipitation in early spring. Peak tracer breakthrough in response to natural precipitation in the bedrock downslope from the trench was delayed only 2 days relative to peak tracer arrival in subsurface stormflow at the trench. Leakage to bedrock influences subsurface stormflow at the storm time‐scale and also the water balance of the hillslope. This has important implications for the age and geochemistry of the water and thus how one models this hillslope and watershed. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
20.
This study documented the spatial and temporal variability of outflow from a forested hillslope segment during snowmelt at a small mountain catchment in south coastal British Columbia, Canada. A pit 5 m wide was established just upslope from the stream channel. Outflow from the organic horizon was intercepted and measured by a single trough, and outflow from the mineral horizons was measured separately for three adjacent sections. Throughflow exhibited non‐steady‐state behaviour involving shifting allocations of flow amongst different sections of the outflow pit, as well as threshold effects and hysteresis in the relationship between pit outflow and water table elevation. Most of the pit outflow originated from the mineral horizons, indicating that throughflow was the dominant pathway by which water was delivered to the stream channel. Direct precipitation and snowmelt onto near‐stream saturated areas can account for less than 20% of the total outflow from the hillslope segment. Throughflow from the mineral sections consistently peaked either at the same time as or earlier than stream flow from the 150‐ha catchment during diurnal snowmelt cycles, indicating that throughflow appears to respond rapidly enough to contribute to snowmelt‐induced peak stream flow. Pit outflow cannot be extrapolated reliably to the catchment scale on the basis of simple length‐ or area‐based ratios. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献