首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

This study was carried out from 2003 to 2007 to understand the hydrogeochemical processes and the solute sources of the meltwaters of the Chhota Shigri Glacier, Himalaya. The meltwater is almost neutral to slightly alkaline in nature: bicarbonate and sulphate are the dominant anions, while calcium and magnesium are the dominant cations. Bicarbonate is found to be derived from carbonate weathering and partly from silicate weathering. Rock weathering followed by precipitation are the main controlling factors that influence the meltwater chemistry of this region. The relatively high values of pCO2 reflect a higher rate of solubility in comparison to release of excess CO2 gas to the atmosphere. The presence of active hydrogeochemical processes and sediment–water interaction results in excess solute transport through the meltwater to the Chandra River that feeds the Chenab, one of the great Himalayan river systems, and ultimately flows into the ocean. This study is the first of its kind to understand in detail the hydrogeochemical process and resultant solute load transport in this Himalayan glacier.

Citation Sharma, P., Ramanathan, A.L., and Pottakkal, J., 2013. Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrological Sciences Journal, 58 (5), 1128–1143.

Editor Z.W. Kundzewicz  相似文献   

2.
N. Rajmohan  L. Elango 《水文研究》2006,20(11):2415-2427
An investigation was carried out to understand the role of water level fluctuation on major‐ion chemistry of groundwater in the Palar and Cheyyar river basins, southern India. As groundwater is the only major source of water for agricultural and drinking purposes in this area, it is important to know the effect of geological formations and agricultural activities on groundwater chemistry. Groundwater samples were collected once a month from 43 wells (641 samples in total), from January 1998 to June 1999, and analysed for major ions. The results indicate that the major‐ion chemistry of the groundwater varies with respect to space. Groundwater occurring near the River Palar has a high concentration of major ions except calcium, due to the absence of any recharge from the river, whereas lower concentrations of major ions were observed in the central part of the study area due to the recharge of fresh water from a number of surface reservoirs. The major‐ion chemistry of the study region is controlled by both mineral dissolution and anthropogenic activities. The relative contributions of mineral dissolution and anthropogenic contamination are estimated by a stoichiometric approach, which suggests that mineral dissolution is the dominant process in both the formations. The relation between water level fluctuations and major‐ion chemistry indicates that major‐ion chemistry is also greatly influenced by the water level fluctuations in different geological formations. Thus, the major‐ion chemistry of groundwater in this region is greatly influenced by mineral dissolution, anthropogenic activities and water level fluctuations in different geological formations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Stable isotope measurements in precipitation help us to form the basic inference about the origin and the state of water in different environments. The precipitation samples collected during the South West Monsoon (SWM) during August 2007 from 37 different locations in the state help in deriving the first preliminary local meteoric water line (LMWL) for the Tamil Nadu State. The study reveals that there are three main sources of water vapours, namely South East Arabian Sea (SEAS), Indian Ocean (IO) and evaporation from local water bodies. There are wide variations in the altitude and amount of rainfall received in the state. It is also noted that there is a significant variation in the latitude and the distance from the coast. Hence, an attempt is made in this paper to study the factors controlling the composition of stable isotopes in precipitation with reference to amount of rainfall, latitude, altitude and the continental effect. The altitude and continental effect shows good correlation to the variations in stable isotope composition. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

Around 9000 inhabitants in the Panda River basin, Sonbhadhra District, Uttar Pradesh, India, are vulnerable to a “silent” dental and skeletal fluorosis from groundwater consumption. The fluoride source and seasonal groundwater quality variation were studied by collecting 65 groundwater samples in the Upper Panda River basin. Major rock types are phyllites and granite gneissic rocks. Fluoride concentrations are in the range 0.4–5.6 mg/L in the pre-monsoon season and 0.1–6.7 mg/L in the post-monsoon season. Fluor-apatite and biotite mica in the granite gneissic rock were identified as the main provenance of fluoride in the groundwater through water–rock interactions. Due to precipitation of calcium, soils become alkaline with high contents of sodium; these conditions allow fluoride to accumulate in water. According to risk index calculations, the fluoride-affected villages were shown to fall in the fluoride risk zone (with a risk index of around 1.7). On the basis of mineral stability diagrams, groundwater from the weathered and fractured aquifers appears to be stable within the kaolinite field, suggesting weathering of silicate minerals. The groundwater is chemically potable and suitable for domestic and agricultural purposes, except for a few wells in the southern region that are contaminated with high amounts of fluoride.

Editor D. Koutsoyiannis

Citation Raju, N.J., Dey, S., Gossel, W., and Wycisk, P., 2012. Fluoride hazard and assessment of groundwater quality in the semi-arid Upper Panda River basin, Sonbhadra District, Uttar Pradesh, India. Hydrological Sciences Journal, 57 (7), 1433–1452.  相似文献   

5.
The feasibility of a potential bioindicator based on functional groups of microzooplankton tintinnids for bioassessments of water quality status was studied during southwest monsoon (June to September) along the coastal waters of Kalpakkam, India during 2012–2015. The work highlights the following features (1) tintinnid community composed of 28 species belonging to 11 genera and 9 families, revealed significant differences among the four study sites (2) maximum numerical abundance (2224 ± 90 ind. l? 1) and species diversity (H′ = 2.66) of tintinnid were recorded towards Bay of Bengal whereas minimum abundance (720 ± 35 ind. l? 1) and diversity (H′ = 1.74) were encountered in the backwater sites, (3) multivariate analyses [RELATE, Biota-environment (BIOENV) and canonical analysis of principal coordinates (CAP)] reveal that chl a, nitrate and phosphate were the potential causative factors for tintinnid distribution. Based on the results, we suggest that tintinnids may be used as a potential bioindicator of water quality status in marine ecosystem.  相似文献   

6.
《水文科学杂志》2013,58(6):1149-1162
Abstract

Groundwater quality problems have emerged in many geographical areas due to natural environmental processes and human intervention in the geosystems. Hydrogeochemical appraisal of fluoride contaminated groundwater in Mehsana District, Gujarat State, India is carried out by means of groundwater quality investigations together with X-ray diffraction analysis of soil samples in the delineated high fluoride areas. Results show that fluoride has negative relationships with calcium, whereas relationships with sodium, alkalinity and sulphate are positive. Results obtained from aqueous speciation modelling using PHREEQC reveal that the groundwater is undersaturated with fluorite and oversaturated with calcite. The factor analysis indicates that sodium plus potassium bicarbonate groundwater have high factor loading for fluoride, whereas that for calcium chloride and magnesium chloride groundwater is low. The plausible geochemical reactions in the study area are precipitation of calcite and dissolution of dolomite, carbon dioxide and sulphate minerals with ion exchange.  相似文献   

7.
Groundwater salinity is a widespread problem and a challenge to water resources management. It is an increasing concern in the alluvial plains of Delhi and neighbouring Haryana state as well as a risk for agricultural production water supply and sustainable development. This study aims to identify potential sources of dissolved salts and the driving mechanisms of salinity ingress in the shallow aquifer. It combines a comprehensive review of environmental conditions and the analysis of groundwater samples from 25 sampling points. Major ions are analysed to describe the composition and distribution of saline groundwater and dissolution/precipitation dynamics. Density stratification and local upconing of saline waters were identified by multilevel monitoring and temperature logging. Bromide–chloride ratios hold information on the formation of saline waters, and nitrate is used as an indicator for anthropogenic influences. In addition, stable isotope analysis helps to identify evaporation and to better understand recharge processes and mixing dynamics in the study region. The results lead to the conclusion that surface water and groundwater influx into the poorly drained semiarid basin naturally results in the accumulation of salts in soil, sediments and groundwater. Human‐induced changes of environmental conditions, especially the implementation of traditional canal and modern groundwater irrigation, have augmented evapotranspiration and led to waterlogging in large areas. In addition, water‐level fluctuations and perturbation of the natural hydraulic equilibrium favour the mobilisation of salts from salt stores in the unsaturated zone and deeper aquifer sections. The holistic approach of this study demonstrates the importance of various salinity mechanisms and provides new insights into the interference of natural and anthropogenic influences. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
9.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Marathwada Agricultural University, Pharbani, has developed about 560 hectares of Wagarwadi watershed in Pharbani district since 1987. Groundwater monitoring on 16 observations wells at weekly intervals commenced in January 1992, and rainfall and pan evaporation has been measured daily at a hydrometeorological station situated in the nearby university campus. Aquifer parameters, namely, transmissivity and specific yield, have been estimated by carrying out a pumping test on a large diameter well. Groundwater recharge resulting from rainfall has been estimated using a water balance model of the soil moisture zone considering soil zone thickness and crops grown. The SCS (Soil Conservation Service) curve number method was used for surface runoff estimation. The groundwater flow model has been constructed using the nested squares, finite difference method. Nested square meshes of sizes 160 m×160 m and 80 m×80 m have been used and the steady-state condition of aquifer system was simulated in the model assuming the June 1992 water level configuration under equilibrium conditions. The model has been calibrated for transient conditions incorporating additional seepage from the water harvesting structures and their contribution to the groundwater regime has been assessed. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Intense agricultural and industrial activities in any area are likely to make groundwater vulnerable with respect to its quality. In one such area which is a part of Sabarmati river basin of Gujarat, factors influencing the groundwater hydrochemistry in pre‐ and post‐monsoon season were evaluated. Groundwater samples were collected from 5 km × 5 km grids on the basis of spectral signature of vegetation and soil, observed on satellite image. Integration of Conventional graphical plots, Piper plot, saturation index values (estimated using PHREEQC) and GIS was helpful not only to create the database for analysis of spatial variation in respective water quality parameters but also to decipher the hydrogeochemical process occurring in such a large area. USSL diagram and % sodium were used to characterise the suitability of groundwater for irrigation. It was observed that leaching of wastes disposed from anthropogenic activities and agrichemicals is the major factor influencing the groundwater quality, in addition to the natural processes such as weathering, dissolution and ion exchange. Sea water relics are also impacting the groundwater quality. Control of indiscriminate and unplanned exploitation of groundwater, application of fertilizers and disposal of industrial wastes in the affected areas can possibly ensure groundwater protection from further pollution and depletion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The groundwater regime in the north‐western part of the Visakhapatnam urban area was polluted as early as 1981 by discharge of untreated industrial effluent from a Hindustan Polymers Limited (HPL) plant. A total dissolved solids (TDS) concentration of surficial effluent up to 6500 mg/l and of groundwater in the range 3000–4200 mg/l has been reported in the environs of the HPL plant during May 1992. Groundwater occurs under water table conditions. The groundwater flow model was simulated as a single layer aquifer, using MODFLOW and FLOWPATH computer models. Aquifer parameters were estimated and the value of effective porosity assumed. The water table configuration was mapped in May 1981 using 33 observation wells. The calibrated hydraulic head distribution was used to compute the velocity field using the effective porosity values. The flow paths of groundwater migration from the source locations up to 2002 AD were predicted. Pathlines of particles in the groundwater indicated a predominant north‐east and south‐west migration of groundwater pollution in the area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
A genetic and evolutionary model is established for saline depressions in continental areas. These depressions are located in arid or subarid areas, and are developed on low permeability geological mediums (K<10 mm/day) with a lack of streams reaching the small lakes. The phenomenon of evaporation is fundamental, since it is the basic requirement for the presence or absence of a free water surface in the lake, and also for depression of the phreatic surface, which causes inflow of groundwater towards the lake. With these conditions, the proposed model includes the following stages: (i) initiation of the close depression; (ii) deepening of the depression; (iii) formation of the lake basin and the end of the deepening; and (iv) levelling and lateral extension of the lake basin. The combined effects of groundwater flows and aeolian action offer a coherent explanation for the origin and evolution both of the closed depressions found in the Ebro Valley, and of the salt lakes that subsequently form. The processes described form morphologies of oval shape with the main axis parallel to the direction of the wind, flat floors and evaporitic sedimentation, although they act on geological materials with different lithologies. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
N. Rajmohan  L. Elango 《水文研究》2007,21(20):2698-2712
Study of the movement of water and solute within soil profiles is important for a number of reasons. Accumulation of prominent contaminants from agricultural chemicals in the unsaturated zone over the years is a major concern in many parts of the world. As a result, the unsaturated zone has been a subject of great research interest during the past decade. Hence, an intensive field study was conducted in a part of Palar and Cheyyar river basins to understand the variation of major ions and nutrients in the soil zone during paddy cultivation. The chloride and nitrate data were used to model the movement of these chemicals in the unsaturated zone using the HYDRUS‐2D model. The field study shows that fertilizer application and irrigation return flow increases the major ions and nutrients concentration in the unsaturated zone. Further, the nutrient concentrations are regulated by plant uptake, fertilizer application and infiltration rate. Additionally, denitrification and soil mineralization processes also regulate the nitrogen concentration in the unsaturated zone. The solute transport modelling study concluded that the simulated results match reasonably with the observed trends. Simulated concentrations of chloride and nitrate for a 5‐year period indicate that the concentrations of these ions fluctuate in a cyclic manner (from 60 to 68 mg l?1 and from 3·4 to 3·5 mg l?1 respectively in groundwater) with no upward and downward trend. The influence of excessive fertilizer application on groundwater was also modelled. The model predicts an increase of about 17 mg l?1 of chloride and 2·3 mg l?1 of nitrogen in the groundwater of this area when the application of fertilizers is doubled. The model indicates that the present level of use of agrochemicals is no threat to the groundwater quality. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A 235.5 km2 headwater catchment of the Krishna River in the Deccan plateau lavas is dry for eight months of the year but receives intense monsoonal rains during four months. High initial suspended sediment concentrations fall as rapid vegetation growth provides increasing protection. During a six-year period annual suspended sediment yields from the deeply weathered kaolinitic soils ranged between 36.9 and 275.3 t km?2 in dry and wet years respectively.  相似文献   

16.
High groundwater salinity has become a major concern in the arid alluvial plain of the Dunhuang Basin in northwestern China because it poses a significant challenge to water resource management. Isotopic and geochemical analyses were conducted on 55 water samples from springs, boreholes and surface water to identify potential sources of groundwater salinity and analyse the processes that control increasing salinity. The total dissolved solid (TDS) content in the groundwater ranged from 400 to 41 000 mg/l, and high TDS values were commonly associated with shallow water tables and flow‐through and discharge zones in unconfined aquifers. Various groundwater contributions from rainwater, agricultural irrigation, river water infiltration and lateral inflows from mountains were identified by major ions and δD and δ18O. In general, HCO3? and SO42? were the dominant anions in groundwater with a salinity of <2500 mg/l, whereas Cl? and SO42? were the dominant anions in groundwater with a salinity of >2500 mg/l. The major ion concentrations indicated that mineral weathering, including carbonate and evaporite dissolution, primarily affected groundwater salinity in recharge areas. Evapotranspiration controlled the major ion concentration evolution and salinity distribution in the unconfined groundwaters in the flow‐through and discharge areas, although it had a limited effect on groundwater in the recharge areas and confined aquifers. Agricultural irrigation increased the water table and enhanced evapotranspiration in the oasis areas of the basin. TDS and Cl became more concentrated, but H and O isotopes were not enriched in the irrigation district, indicating that transpiration dominated the increasing salinity. For other places in the basin, as indicated by TDS, Cl, δD and δ18O characteristics, evaporation, transpiration and water–rock interactions dominated at different hydrogeological zones, depending on the plant coverage and hydrogeological conditions. Groundwater ages of 3H, and δD and δ18O compositions and distributions suggest that most of the groundwaters in Dunhuang Basin have a paleometeoric origin and experienced a long residence time. These results can contribute to groundwater management and future water allocation programmes in the Dunhuang Basin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Eolian processes were the subject of detailed studies in the high-mountain area of the Tatra Mts. The field investigations in 1975–80 attempted to determine the amount of deflation and eolian deposition and to improve understanding of their mechanism. The net rates of these processes were determined from repeated survey of deflational forms and of eolian deposits. Observations of the mechanism of material displacement were based on field experiments carried out during strong winds. All the investigations were conducted using simple methods and traps. Relationships between the course and intensity of processes and wind conditions and soil properties were obtained.  相似文献   

18.
A mildly damaging earthquake of magnitude 4.5 and intensity VI occurred 20 km east of the Idukki reservoir, Kerala in southern India. With a network of 5 seismic stations, the aftershocks which continued for 3 1/2 months were monitored. The hypocentral parameters, b value,M 1/M 0 ratio indicate that this earthquake sequence does not qualify to be categorized as induced. The trend of the aftershocks, composite fault plane solution and local tectonics point towards reactivation of a NW-SE fault along the Kallar river. The existence of such a fault is also supported by gravity studies.  相似文献   

19.
Despite the importance of tropical ecosystems for climate regulation, biodiversity, water and nutrient cycles, only a few Critical Zone Observatories (CZOs) are located in the tropics. Among these, most are in humid climates, while very few data exist for semi-arid and sub-humid climates, due to the difficulty of estimating hydro-geochemical balances in catchments with ephemeral streams. We contribute to fill this gap by presenting a meteorological and hydro-geochemical dataset acquired at the Mule Hole catchment (4.1 km2), a pristine dry deciduous forest located in a biosphere reserve in south India. The dataset consists of time series of variables related to (i) meteorology, including rainfall, air temperature, relative humidity, wind speed and direction, and global radiation, (ii) hydrology, including water level and discharge at the catchment outlet, (iii) hydrogeology, including manual (monthly) and/or automated (from 15 min to hourly) groundwater levels in nine piezometers and (iv) geochemistry, including suspended sediment content in the stream and chemical composition of rainfall (event based), groundwater (monthly sampling) and stream water (storm events, 15 min to hourly frequency with an automatic sampler). The time series extend from 2003 to 2019. Measurement errors are minimized by frequent calibration of sensors and quality checks, both in the field and in the laboratory. Despite these precautions, several data gaps exist, due to occasional access restriction to the site and instrument destruction by wildlife. Results show that large seasonal and interannual variations of climatic conditions were reflected in the large variations of stream flow and groundwater recharge, as well as in water chemical composition. Notably, they reveal a long-term evolution of groundwater storage, suggesting hydrogeological cycles on a decadal scale. This dataset, alone or in combination with other data, has already allowed to better understand water and element cycling in tropical dry forests, and the role of forest diversity on biogeochemical cycles. As tropical ecosystems are underrepresented by Critical Zone Observatories, we expect this data note to be valuable for the global scientific community.  相似文献   

20.
Body waveform modeling is used to determine the source processes of three large earthquakes (magnitude 6.8, 6.4, 6.3) occurring between February 9 and 15, 1956 along the San Miguel fault in northern Baja California, Mexico. Results of the modeling suggest that the mainshock on February 9 was responsible for the 20 km of surface faulting observed during the sequence. Although previous researchers have suggested a complex rupture history for the mainshock, uncertainty estimates of source-time function shape indicate single or double source models fit the observed waveforms equally well. The February 15 aftershock, however, appears to have consisted of two events. Locations and focal mechanisms obtained for the three events suggest that the rupture process may have been controlled by cross faults to the main trace of the San Miguel fault. The good correlation between source parameter information and the surficial geology/geometry of the San Miguel fault zone demonstrates the usefulness of waveform modeling studies in unravelling the complexities of historic multi-event earthquake sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号