首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract

Equatorial rivers of East Africa exhibit unusually complex seasonal and inter-annual flow regimes, and aquatic and adjacent terrestrial organisms have adapted to cope with this flow variability. This study examined the annual flow regime over the past 40 years for three gauging stations on the Mara River in Kenya and Tanzania, which is of international importance because it is the only perennial river traversing the Mara-Serengeti ecoregion. Select environmental flow components were quantified and converted to ecologically relevant hydraulic variables. Vegetation, macroinvertebrates, and fish were collected and identified at target study sites during low and high flows. The results were compared with available knowledge of the life histories and flow sensitivities of the riverine communities to infer flow–ecology relationships. Management implications are discussed, including the need to preserve a dynamic environmental flow regime to protect ecosystems in the region. The results for the Mara may serve as a useful model for river basins of the wider equatorial East Africa region.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

2.
Abstract

Environmental flow provisions are a legal obligation under South Africa’s National Water Act (1998) where they are known as the “ecological reserve”, which is now being realized in river operations. This article presents a semi-quantitative method, based on flow–duration curve (FDC) analysis, used to assess the compliance of the Crocodile (East) River with the reserve in an historical context. Using both monthly and daily average flow data, we determine the extent and magnitude of non-compliant flows against environmental water requirements (EWRs) for three periods (1960–1983, 1983–2000, and 2000–2010). The results suggest a high degree of non-compliance, with the reserve increasing with each of these periods (14%, 35%, and 39% of the time), respectively, where effects were most pronounced in the low-flow season. The results also suggest that, whilst the magnitudes of reserve infringements for the latter period are relatively high, there appears to have been some improvement since the implementation of the river’s operating rules.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Riddell, E., Pollard, S., Mallory, S., and Sawunyama, T., 2014. A methodology for historical assessment of compliance with environmental water allocations: lessons from the Crocodile (East) River, South Africa. Hydrological Sciences Journal, 59 (3–4), 831–843.  相似文献   

3.
Abstract

The strong wet and dry seasons of tropical monsoon hydrology in India necessitate development of storage and flow diversion schemes for utilization of water to meet various social and economic needs. However, the river valley schemes may cause adverse flow-related impacts due to storage, flow diversion, tunnelling and spoil disposal. There may be critical reaches in which altered flows are not able to sustain the river channel ecology and riparian environment that existed prior to implementation of the storage and diversion schemes. In the past, environmental flows in India have usually been understood as the minimum flow to be released downstream from a dam as compensation for riparian rights, without considering the impacts on the river ecosystem. Rivers in India have been significantly influenced by anthropogenic activities over the past 60 years and have great social and religious significance to the vast population. This paper explores various aspects of past, present and future environmental flow assessment (EFA) in India highlighted by case studies from rivers across the nation. It demonstrates that multidisciplinary studies requiring expertise from a range of fields are needed for EFA, and that environmental flows are necessary for aquatic ecosystems to remain in a healthy state and for the sustainable use of water resources. The major focus areas for the development of EFA research in India are the creation of a shareable database for hydrological, ecological and socioeconomic data, developing hydrology–ecology relationships, evaluation of ecosystem services, addressing pollution due to anthropogenic activities and promotion of research on EFA. At the same time, efforts will be needed to develop new methods or refine existing methods for India.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Jain, S.K. and Kumar, P., 2014. Environmental flows in India: towards sustainable water management. Hydrological Sciences Journal, 59 (3–4), 751–769.  相似文献   

4.
《水文科学杂志》2012,57(1):138-151
ABSTRACT

Most catchments in tropical regions are ungauged and data deficient, complicating the simulation of water quantity and quality. Yet, developing and testing hydrological models in data-poor regions is vital to support water management. Here, we used the Soil and Water Assessment Tool (SWAT) to predict stream runoff in Halda Basin in Bangladesh. While the calibrated model’s performance was satisfactory (R2 = 0.80, NSE = 0.71), the model was unable to track the extreme low flow peaks due to the temporal and spatial variability of rainfall which may not be fully captured by using data from one rainfall gauging station. Groundwater delay time, baseflow alpha factor and curve number were the most sensitive parameters influencing model performance. This study improves understanding of the key processes of a catchment in a data-poor, monsoon driven, small river basin and could serve as a baseline for scenario modelling for future water management and policy framework.  相似文献   

5.
Abstract

Multidisciplinary models are useful for integrating different disciplines when addressing water planning and management problems. We combine water resources management, water quality and habitat analysis tools that were developed with the decision support system AQUATOOL at the basin scale. The water management model solves the allocation problem through network flow optimization and considers the environmental flows in some river stretches. Once volumes and flows are estimated, the water quality model is applied. Furthermore, the flows are evaluated from an ecological perspective using time series of aquatic species habitat indicators. This approach was applied in the Tormes River Water System, where agricultural demands jeopardize the environmental needs of the river ecosystem. Additionally, water quality problems in the lower part of the river result from wastewater loading and agricultural pollution. Our methodological framework can be used to define water management rules that maintain water supply, aquatic ecosystem and legal standards of water quality. The integration of ecological and water management criteria in a software platform with objective criteria and heuristic optimization procedures allows realistic assessment and application of environmental flows to be made. Here, we improve the general methodological framework by assessing the hydrological alteration of selected environmental flow regime scenarios.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation Paredes-Arquiola, J., Solera, A., Martinez-Capel, F., Momblanch, A., and Andreu, J., 2014. Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrological Sciences Journal, 59 (3–4), 878–889.  相似文献   

6.
《水文科学杂志》2013,58(6):1068-1078
Abstract

The study aims to set and implement environmentally relevant limits for the exploitation of mountain streams in the Kura River basin of Azerbaijan. Such streams represent the preferred spawning grounds for valuable sturgeon of the Caspian Sea, but experience continuously increasing exploitation in the form of water withdrawals for industry and irrigation. Since no detailed environmental flow assessments have been conducted on any of the Kura basin streams, an interim approach is suggested based on minimum flow, referred to as “base environmental minimum”. The latter may be estimated from the unregulated parts of observed or simulated daily flow records. Environmental flow requirements for individual months of an individual year may be calculated using correction factors related to monthly rainfall. Simple relationships are suggested for base environmental flow estimation at ungauged sites, and the implications of river pollution for monthly environmental requirements are examined. Further, definition of environmentally critical periods in a stream is proposed based on a ratio of observed to “environmental” flow as an indicator of environmental stress. It is illustrated that the conjunctive use of several closely located streams for water supply may significantly reduce the duration of, or completely eliminate, environmentally critical periods. The idea of environmentally acceptable areal water withdrawal is formulated, so that the overall approach may be applied for environmentally sustainable water withdrawal management in other small streams.  相似文献   

7.
Abstract

In many of the world’s river basins, the water resources are over-allocated and/or highly modified, access to good quality water is limited or competitive and aquatic ecosystems are degraded. The decline in aquatic ecosystems can impact on human well-being by reducing the ecosystem services provided by healthy rivers, wetlands and floodplains. Basin water resources management requires the determination of water allocation among competing stakeholders including the environment, social needs and economic development. Traditionally, this determination occurred on a volumetric basis to meet basin productivity goals. However, it is difficult to address environmental goals in such a framework, because environmental condition is rarely considered in productivity goals, and short-term variations in river flow may be the most important driver of aquatic ecosystem health. Manipulation of flows to achieve desired outcomes for public supply, food and energy has been implemented for many years. More recently, manipulating flows to achieve ecological outcomes has been proposed. However, the complexity of determining the required flow regimes and the interdependencies between stakeholder outcomes has restricted the implementation of environmental flows as a core component of Integrated Water Resources Management (IWRM). We demonstrate through case studies of the Rhône and Thames river basins in Europe, the Colorado River basin in North America and the Murray-Darling basin in Australia the limitations of traditional environmental flow strategies in integrated water resources management. An alternative ecosystem approach can provide a framework for implementation of environmental flows in basin water resources management, as demonstrated by management of the Pangani River basin in Africa. An ecosystem approach in IWRM leads to management for agreed triple-bottom-line outcomes, rather than productivity or ecological outcomes alone. We recommend that environmental flow management should take on the principles of an ecosystem approach and form an integral part of IWRM.

Editor D. Koutsoyiannis

Citation Overton, I.C., Smith, D.M., Dalton J., Barchiesi S., Acreman M.C., Stromberg, J.C., and Kirby, J.M., 2014. Implementing environmental flows in integrated water resources management and the ecosystem approach. Hydrological Sciences Journal, 59 (3–4), 860–877.  相似文献   

8.
Abstract

The aim of this article is to assess the impact of four scenarios combining possible changes in climate, atmospheric carbon dioxide, land use and water use by 2050, on the specific set of ecologically relevant flow regime indicators that define environmental flow requirements in a semi-natural river basin in Poland. This aim is presented through a modelling case study using the Soil and Water Assessment Tool (SWAT). Indicators show both positive and negative responses to future changes. Warm projections from the IPSL-CM4 global climate model combined with sustainable land- and water-use projections (SuE) produce the most negative changes, while warm and wet projections from the MIROC3.2 model combined with market-driven projections (EcF) gave the most positive changes. Climate change overshadows land- and water-use change in terms of the magnitude of projected flow alterations. The future of environmental water quantity is brighter under the market-driven rather than the sustainability-driven scenario, which shows that sustainability for terrestrial ecosystems (e.g. more forests and grasslands) can be at variance with sustainability for riverine and riparian ecosystems (requiring sufficient amount and proper timing of river flows).
Editor D. Koutsoyiannis

Citation Piniewski, M., Okruszko, T., and Acreman, M.C., 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew basin, Poland. Hydrological Sciences Journal, 59 (3–4), 916–934.  相似文献   

9.
Abstract

The Okavango River system flows through Angola, Namibia and Botswana. It is in near-natural condition and supports globally iconic wetlands and wildlife. The basin’s people are poor and development is inevitable: the next decade is critical. The river could become an example of responsible planning that resolutely addresses the three pillars of sustainable development. Recognizing this, the Member States completed a transboundary diagnostic analysis (TDA) in 2010 funded by the three governments and the Global Environment Facility. A central feature of the TDA was a basin-wide environmental flow assessment using the DRIFT (Downstream Response to Imposed Flow Transformation) holistic approach. This produced scenarios of increasing water resource use that spelled out the costs and benefits in terms of the health of the river ecosystem, associated social structures and local and national economies. The results were used to help create a transboundary strategic action programme, which the Member States are now beginning to act on. This article describes the DRIFT application, the findings and how these could be used to help achieve sustainable development.
Editor D. Koutsoyiannis; Guest editor M. Acreman

Citation King, J., Beuster, H., Brown, C., and Joubert, A., 2014. Pro-active management: the role of environmental flows in transboundary cooperative planning for the Okavango River system. Hydrological Sciences Journal, 59 (3–4), 786–800.  相似文献   

10.
Abstract

This investigation presents a new approach to estimate the costs resulting from the introduction of environmental flows in the arid Huasco River basin, located in the Atacama Region of Chile, one of the most sophisticated private water markets worldwide. The aim is to provide information to the water users, who hold the right to decide on water use, and thereby support the inclusion of environmental flows into decision-making. Costs are estimated by calculating the loss of agricultural productivity resulting from a trade-off between users and environmental flow requirements in times of water scarcity. Based on environmental flow requirements calculated by International Union for Conservation of Nature (IUCN), and hydrological supply-and-demand modelling using the Water Evaluation and Planning (WEAP) model, economic parameters of water productivity are calculated for the main economic sectors and then included in hydrological analysis. The study presents concrete costs that might be imposed on the water users during times of water scarcity, and confirms that there are significant variations in water productivity between different sectors.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Wagnitz, P., Núñez, J., and Ribbe, L., 2014. Cost of environmental flow during water scarcity in the arid Huasco River basin, northern Chile. Hydrological Sciences Journal, 59 (3–4), 700–712.  相似文献   

11.
Abstract

River science and management often require a design or reference discharge. The common (and sometimes unavoidable) use of such discharges may, however, obscure the fact that the magnitude and frequency of critical flows can differ due to various hydrological, geomorphological, and ecological criteria. Threshold stages and discharges were identified for six lower Brazos River, Texas gaging stations corresponding to thalweg connectivity, bed inundation, high sub-banktop flows, channel–floodplain connectivity (CFC), and overbank flooding. Critical flows were also identified for estimated thresholds for sandy bedform and medium gravel mobility, critical specific stream power for potential channel modifications, and cohesive-bank channel erosion. These thresholds have variable relationships to mean, median, and maximum flows. For four of the six stations, daily recurrence probabilities for all but flood flows are at least 1%, and as high as 11%. All stations achieve channel–floodplain connectivity at stages less than banktop. Estimated threshold flows for sediment mobility and channel erosion occur relatively frequently, with daily probabilities of 2–77%. Critical flows for bank erosion occur least often, and for sandy bedform and gravel mobility most often. Thalweg connectivity is always maintained at all sites, while bed inundation flows have a daily probability of about 80% or more. Overall, results suggest that no single flow level is dominant in hydrological or geomorphic dynamics, and that the frequency of a given threshold varies considerably even along a single river. The results support the idea that multiple flow levels and ranges are necessary to create and maintain the hydrological, geomorphological, and ecological characteristics of rivers, and that no single flow level is a reliable determinant of fluvial state.
Editor Z.W. Kundzewicz; Associate editor Q. Zhang  相似文献   

12.
Abstract

The hydrology of water-dependent ecosystems around the world has been altered as a result of flow regulation and extraction for a variety of purposes including agricultural and urban water supply. The flow regime of the Murray-Darling Basin in Australia is no exception, with attendant impacts on the health of the environment. Restoration of parts of the flow regime is a key feature of environmental flow delivery. However, environmental flow delivery in a system that is managed primarily to provide a secure and stable supply for irrigation presents challenges for managers seeking to return more natural flow variability in line with ecosystem requirements. The institutional arrangements governing releases of water from storage can influence the ability of managers to respond to natural cues, such as naturally rising flows in a river. As such, the legal and governance aspects of environmental flow delivery are likely to be important influences on the outcomes achieved.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Banks, S.A. and Docker, B.B., 2014. Delivering environmental flows in the Murray-Darling Basin (Australia)—legal and governance aspects. Hydrological Sciences Journal, 59 (3–4), 688–699.  相似文献   

13.
Abstract

The French national project IMAGINE2030 aims to assess future water availability in the Garonne River basin (southwest France) by taking account of changes in both climate and water management in the 2030s. Within this project, two mountainous drainage basins located in the Pyrenees were examined to assess the specific impact of climate change on reservoir management. The Salat River basin at Roquefort, is considered as a proxy (representative of a natural basin), whereas the Ariège River at Foix is influenced by hydropower production in winter and by water releases to sustain low flows in summer. The Cequeau rainfall–runoff model, combined with a simplified model of reservoir management operations, was calibrated on present-day conditions and forced with climate projections derived from the IPCC AR4 report. The results show that a warming climate over the basins induces a decrease in mean annual runoff, a shift to earlier snow melting in mountainous areas and more severe low-flow conditions. The simulations show a decrease in electricity generation. Under two water management scenarios (one “business-as-usual” and the other incorporating an increased downstream water demand in compliance with requirements for increased minimum flow), simulations for the Ariège River basin suggest an earlier filling of the reservoir is necessary in winter to anticipate the increased release from reservoirs in summer to support minimum flow farther downstream.

Editor Z.W. Kundzewicz; Associate editor D. Hughes

Citation Hendrickx, F. and Sauquet, E., 2013. Impact of warming climate on water management for the Ariège River basin (France). Hydrological Sciences Journal, 58 (5), 976–993.  相似文献   

14.
Abstract

A MIKE SHE model of the Mekong, calibrated and validated for 12 gauging stations, is used to simulate climate change scenarios associated with a 2°C increase in global mean temperature projected by seven general circulation models (GCMs). Impacts of each scenario on the river ecosystem and, hence, uncertainty associated with different GCMs are assessed through an environmental flow method based on the range of variability approach. Ecologically relevant hydrological indicators are evaluated for the baseline and each scenario. Baseline-to-scenario change is assessed against thresholds that define likely risk of ecological impact. They are aggregated into single scores for high and low flows. The results demonstrate considerable inter-GCM differences in risk of change. Uncertainty is larger for low flows, with some GCMs projecting high and medium risk at the majority of locations, and others suggesting widespread no or low risk. Inter-GCM differences occur along the main Mekong, as well as within major tributaries.
Editor Z.W. Kundzewicz

Citation Thompson, J.R., Laizé, C.L.R., Green, A.J., Acreman, M.C., and Kingston, D.G., 2014. Climate change uncertainty in environmental flows for the Mekong River. Hydrological Sciences Journal, 59 (3–4), 935–954.  相似文献   

15.
Abstract

A wavelet-neural network (WNN) hybrid modelling approach for monthly river flow estimation and prediction is developed. This approach integrates discrete wavelet multi-resolution decomposition and a back-propagation (BP) feed-forward multilayer perceptron (FFML) artificial neural network (ANN). The Levenberg-Marquardt (LM) algorithm and the Bayesian regularization (BR) algorithm were employed to perform the network modelling. Monthly flow data from three gauges in the Weihe River in China were used for network training and testing for 48-month-ahead prediction. The comparison of results of the WNN hybrid model with those of the single ANN model show that the former is able to significantly increase the prediction accuracy.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Wei, S., Yang, H., Song, J.X., Abbaspour, K., and Xu, Z.X., 2013. A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrological Sciences Journal, 58 (2), 374–389.  相似文献   

16.
Abstract

The lower course of the Acheloos River is an important hydrosystem in Greece, heavily modified by a cascade of four hydropower dams upstream, which is now being extended by two more dams in the upper course. The design of the dams and hydropower facilities that are in operation has not considered any environmental criteria. However, in the last 50 years, numerous methodologies have been proposed to assess the negative impacts of such projects to both the abiotic and biotic environment, and to provide decision support towards establishing appropriate constraints on their operation, typically in terms of minimum flow requirements. In this study, seeking a more environmentally-friendly operation of the hydrosystem, we investigate the outflow policy from the most downstream dam, examining alternative environmental flow approaches. Accounting for data limitations, we recommend the basic flow method, which is parsimonious and suitable for Mediterranean rivers, whose flows exhibit strong variability across seasons. We also show that the wetted perimeter–discharge method, which is an elementary hydraulic approach, provides consistent results, even without using any flow data. Finally, we examine the adaptation of the proposed flow policy (including artificial flooding) to the real-time hydropower generation schedule, and the management of the resulting conflicts.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Efstratiadis, A., Tegos, A., Varveris, A., and Koutsoyiannis, D., 2014. Assessment of environmental flows under limited data availability: case study of the Acheloos River, Greece. Hydrological Sciences Journal, 59 (3–4), 731–750.  相似文献   

17.
Abstract

Effective environmental flow management depends on identification of ecologically-relevant flow attributes to maintain or restore flows in the context of other natural and human influences on stream ecosystems. This study in subtropical eastern Australia identified associations of fish with climatic and flow gradients, catchment topography, reach geology, habitat structure and land use across 20 catchments. Land-use patterns and associated stressors accounted for very little variation in fish assemblage structure. Of the 35 fish species analysed, 24 were strongly associated with gradients in mean daily flows and their variability, baseflow, number of zero-flow days and high-flow pulses, magnitude of the 1-year annual return interval flood and the constancy and predictability of monthly flows. The finding that 22 species (benthic and pelagic) were associated with gradients of antecedent low-flow hydrology indicates that these species (or functional trait groups) should be the focus of further analysis to explore hydro-ecological relationships in systems with regulated flow regimes.
Editor Z.W. Kundzewicz; Guest editor M. Acreman  相似文献   

18.
Abstract

The Pearl River Delta (PRD) is a complicated criss-cross river network. The booming economy and intensifying human activity have greatly altered the natural water levels, which threatens regional sustainable development. The Mann-Kendall trend test and the kriging interpolation method were used to detect the spatial and temporal patterns in the trends of extreme high/low water levels related to different magnitudes of streamflow, in order to explore the impacts of hydrological processes on the water-level changes throughout the PRD. The results indicate that: (a) streamflow changes at the Sanshui and Makou stations exhibit different characteristics. No significant trend can be identified in the streamflow changes at Makou station; however, the streamflow at Sanshui station shows a significant increasing trend, especially in low-flow periods. The decreasing Makou/Sanshui streamflow ratio exerts tremendous impacts on the water-level changes in the hinterland of the PRD region. (b) Extreme high/low water levels exhibit similar changing patterns. The extreme high/low water levels in the high/normal flow periods are decreasing in both the upper PRD and the hinterland of the PRD region. Increasing extreme high/low water levels in low-flow periods can be identified in the hinterland of the PRD region. The coastal regions are characterized by increasing extreme high/low water levels. (c) Extreme high/low water levels for high/normal flow periods in the hinterland of the PRD are heavily impacted by topographic changes due to in-channel dredging. Increasing extreme high/low water levels along the coastal regions are mainly backwater effects caused by serious siltation and rising sea level. This study has scientific and practical merits in regional fluvial management and mitigation of natural hazards.

Citation Zhang, Q., Xu, C.-Y. & Chen, Y. D. (2010) Variability of water levels and impacts from streamflow changes and human activity within the Pearl River Delta, China. Hydrol. Sci. J. 55(4), 512–525.  相似文献   

19.
Consideration of environmental flows in river basin management poses great challenges. Environmental flows are interpreted as the natural or regulated releases of water needed in a river to maintain specified valued features of the river ecosystems. This has never been considered explicitly in water resources management of a river basin. An attempt is, therefore, made here to reflect the perception and implications of environmental flows in water resources management. Assessment approaches are reviewed in the context of flow characteristics of a river system and recommendations are put forward on what is to be done to adopt this new concept in practice.  相似文献   

20.
ABSTRACT

Power plants often use river waters for cooling purposes and can be sensitive to droughts and low flows. Water quality is also a concern, due to algal blooms and sediment loads that might clog filters. We assessed the impacts of droughts on river flow and water quality from the point of view of power plant operation. The INCA (INtegrated CAtchment) water quality model was coupled with a climate model to create a dataset of flow and water quality time series, using the River Trent (UK) as a case study. The result hints to a significant decrease in flows and an increase in phosphorus concentrations, potentially enhancing algal production. Power plants should expect more stress in the future based on the results of this study, due to reduced cooling water availability and decreasing upstream water quality. This issue might have serious consequences also on the whole national power network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号