首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A lumped water balance model was used to derive a monthly water storage series in the Salado–Juramento southern basin, for the period 1954–1986. The evapotranspiration term was estimated using the Bouchet's complementary relationship. Different evapotranspiration formulas following the concepts of potential evapotranspiration and wet environmental evapotranspiration were used. The regional average groundwater levels and the specific yield were used to tune Bouchet's equation. The extrapolation of the water storage series to a secular period (1901–2002) was achieved using a synthetic annual discharge series. The water storage was deficient for most of the century, i.e. more than 60 years; nevertheless in the last 30 years, the system recovers half of the water previously lost. The singular spectral analysis showed that a significant low‐frequency signal is present in the water storage and precipitation series. The main cause of water storage variability would be given by precipitation, in spite of the vast anthropogenic changes on the basin. Anthropogenic effects would be reflected in the river discharges, where no significant signal is detected before 1970; however, an annual signal is insinuated after that year. The conclusions of this work could be different if we only looked at the 1954–1986 period. The results of that period suggest that the basin is primarily accumulating water instead of being mainly in deficit. Thus, here we demonstrated the importance of the secular analysis to illustrate the complete basin behaviour. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This study aims at monitoring the behaviour of the rainfall, runoff, drainage, soil water storage, and evapotranspiration variables involved in the water balance measured by lysimeter data. The evaluation of the water balance considered different time scales, where the components were monitored daily and in 10‐day accumulated period intervals. The results demonstrated that in wet periods the soil water content was greater at a depth of 10 cm, whereas in the dry periods a greater concentration was observed at 70 cm depth. At the depth of 30 cm, the lowest values of soil water content were observed for both wet and dry periods. The results, obtained through the use of tensiometers and time domain reflectometry installed internally and externally to the lysimeter, were very close, which was more noticeable during the periods of lower water loss by the soil. The water balance, calculated from the lysimeter data, demonstrated that 70% of the total rainfall was lost by the process of evapotranspiration. The drainage accounted for 27·5% of the precipitated water, highlighting the fact that this component should not be disregarded in the water balance calculation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Using a water balance modelling framework, this paper analyses the effects of urban design on the water balance, with a focus on evapotranspiration and storm water. First, two quite different urban water balance models are compared: Aquacycle which has been calibrated for a suburban catchment in Canberra, Australia, and the single‐source urban evapotranspiration‐interception scheme (SUES), an energy‐based approach with a biophysically advanced representation of interception and evapotranspiration. A fair agreement between the two modelled estimates of evapotranspiration was significantly improved by allowing the vegetation cover (leaf area index, LAI) to vary seasonally, demonstrating the potential of SUES to quantify the links between water sensitive urban design and microclimates and the advantage of comparing the two modelling approaches. The comparison also revealed where improvements to SUES are needed, chiefly through improved estimates of vegetation cover dynamics as input to SUES, and more rigorous parameterization of the surface resistance equations using local‐scale suburban flux measurements. Second, Aquacycle is used to identify the impact of an array of water sensitive urban design features on the water balance terms. This analysis confirms the potential to passively control urban microclimate by suburban design features that maximize evapotranspiration, such as vegetated roofs. The subsequent effects on daily maximum air temperatures are estimated using an atmospheric boundary layer budget. Potential energy savings of about 2% in summer cooling are estimated from this analysis. This is a clear ‘return on investment’ of using water to maintain urban greenspace, whether as parks distributed throughout an urban area or individual gardens or vegetated roofs. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

5.
Meteorological and environmental data measured in semiarid watersheds during the summer monsoon and winter periods were used to study the interrelationships among flux, meteorological and soil water variables, and to evaluate the effects of these variables on the daily estimation of actual evapotranspiration (AET). The relationship between AET and potential evapotranspiration (PET) as a function of soil water content, as suggested by Thornthwaite–Mather and by Morton, was studied to determine its applicability to the study area. Furthermore, multiple linear regression (MLR) analysis was employed to evaluate the order of importance of the meteorological and soil water factors involved. The results of MLR analysis showed that the combined effects of available energy, soil water content and wind speed were responsible for more than 70% of the observed variations in AET during the summer monsoon period. The analyses also indicate that the combined effects of available energy, vapour pressure deficit and wind speed were responsible for more than 70% of the observed variations in AET during the winter period. However, the test results of two different approaches, using the relationships between AET and PET as a function of soil water content, indicated some inadequacy. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
This study demonstrates the importance of the including and appropriately parameterizing peatlands and forestlands for basin‐scale integrated surface–subsurface models in the northern boreal forest, with particular emphasis on the Athabasca River Basin (ARB). With a long‐term water balance approach to the ARB, we investigate reasons why downstream mean annual stream flow rates are consistently higher than upstream, despite the subhumid water deficit conditions in the downstream regimes. A high‐resolution 3D variably saturated subsurface and surface water flow and evapotranspiration model of the ARB is constructed based on the bedrock and surficial geology and the spatial distribution of peatlands and their corresponding eco‐regions. Historical climate data were used to drive the model for calibration against 40‐year long‐term average surface flow and groundwater observations during the historic instrumental period. The simulation results demonstrate that at the basin‐scale, peatlands and forestlands can have a strong influence on the surface–subsurface hydrologic systems. In particular, peatlands in the midstream and downstream regimes of the ARB increase the water availability to the surface–subsurface water systems by reducing water loss through evapotranspiration. Based on the comparison of forestland evapotranspiration between observation and simulation, the overall spatial average evapotranspiration in downstream forestlands is larger than that in peatlands and thus the water contribution to the stream flow in downstream areas is relatively minor. Therefore, appropriate representation of peatlands and forestlands within the basin‐scale hydrologic model is critical to reproduce the water balance of the ARB.  相似文献   

7.
Carbon storage values in the Amazon basin have been studied through different approaches in the last decades in order to clarify whether the rainforest ecosystem is likely to act as a sink or source for carbon in the near future. This water balance, dissolved organic carbon (DOC) and nutrient export study were carried out in a micro‐scale heath forest (Campina) catchment in central Amazonia, Brazil. For a 1‐year study period (18 March 2007 until 19 March 2008), rainfall amounted to 3054 mm; of which, 1532 mm was evaporated by the forest (4.1 mm day?1). Rainfall interception loss amounted to 15.6% of gross rainfall. Surface runoff amounted to 485 mm, whereas another 1071 mm was discharged as regional groundwater outflow. Accumulated DOC exports in surface runoff amounted to 15.3 g m?2 year?1, whereas the total carbon exported was 55.9 g m?2. This is much higher than that observed for a nearby tall rainforest catchment in central Amazonia (DOC export < 20 g m?2). As Campina heath forest areas cover a significant proportion of the Amazon Basin, these differences in ecosystem hydrological carbon exports should be taken into account in future studies assessing the carbon budget for the Amazon Basin. Macro‐nutrient exports were low, but those of calcium and potassium were higher than those observed for tall rainforest in the Amazon, which may be caused by a lower retention capacity of the heath forest ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A combination of micro-meteorological, soil physical and groundwater chemical methods enabled the water balance of a tropical eucalypt savanna ecosystem in Northern Australia to be estimated. Heat pulse and eddy correlation were used to determine overstory and total evapotranspiration, respectively. Measurements of soil water content, matric suction and water table variations were used to determine changes in soil moisture storage throughout the year. Groundwater dating with chlorofluorocarbons was used to estimate net groundwater recharge rates, and stream gauging was used to determine surface runoff. The wet season rainfall of 1585 mm is distributed as: evapotranspiration 810 mm, surface runoff (and shallow subsurface flow) into the river 410 mm, groundwater recharge 200 mm and increase in soil store 165 mm. Of the groundwater recharge, 160 mm enters the stream as baseflow in the wet season, 20 mm enters as baseflow in the dry season, and the balance (20 mm) is distributed to and used by minor vegetation types within the catchment or discharges to the sea. In the dry season, an evapotranspiration of 300 mm comprises 135 mm rainfall and 165 mm from the soil store. Because of the inherent errors of the different techniques, the water balance surplus (estimated at 20 mm) cannot be clearly distinguished from zero. It may also be as much as 140 mm. To our knowledge, this is the first time that such diverse methods have been combined to estimate all components of a catchment's water balance.  相似文献   

9.
咸海地处中亚,气候和人类的双重影响下湖面急剧萎缩引发区域生态危机,定量解析其水量平衡互动关系及影响因素对咸海地区水资源管理和生态保护有重要意义.基于1990-2019年密集时序Landsat影像、T/P卫星、Jason1/2测高卫星及咸海数字测深模型(DBM),提取近30年咸海面积、水位变化信息,重建咸海水位-面积-库...  相似文献   

10.
《水文科学杂志》2013,58(5):829-840
Abstract

The paper presents a compact picture of the occurrence of water on Earth, including the temporal development of water resources of the planet, the current water balance, and the future of water on Earth. In examining numerous standard hydrological references and new developments in quantification of the water resources of planet Earth, several corrections are proposed to the hydrological water balance of Earth. Particular attention is drawn to the areas of open water surfaces on land, which according to current estimates are much larger than reported in standard hydrological references. The paper stresses the need for improvements in our understanding of the hydrological cycle and presents several conclusions on the ways to improve this understanding and future visualizations of the water balance of Earth.  相似文献   

11.
The Tonle Sap Lake of Cambodia is the largest freshwater body of Southeast Asia, forming an important part of the Mekong River system. The lake has an extremely productive ecosystem and operates as a natural floodwater reservoir for the lower Mekong Basin, offering flood protection and assuring the dry season flow to the Mekong Delta. In light of the accelerating pace of water resources development within the Mekong Basin and the anticipation of potentially significant hydrological impacts, it is critical to understand the overall hydrologic regime of Tonle Sap Lake. We present here a detailed water balance model based on observed data of discharges from the lake's tributaries, discharge between Mekong and the lake through the Tonle Sap River, precipitation, and evaporation. The overland flow between the Mekong and lake was modelled with the EIA 3D hydrodynamic model. We found that majority (53.5%) of the water originates from the Mekong mainstream, but the lake's tributaries also play an important role contributing 34% of the annual flow, while 12.5% is derived from precipitation. The water level in the lake is mainly controlled by the water level in the Mekong mainstream. The Tonle Sap system is hence very vulnerable, from a water quantity point of view, to possible changes in the Mekong mainstream and thus, development activities in the whole Mekong basin. From a biogeochemical point of view, the possible changes in the lake's own catchment are equally important, together with the changes in the whole Mekong Basin. Based on our findings, we recommend of continuing the monitoring programmes in lake's tributaries and urgently starting of groundwater measurement campaign within the floodplain, and including the groundwater modelling to be part of the hydrodynamic models applied for the lake. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
青海湖水量平衡及水位变化预测   总被引:12,自引:5,他引:12  
曲耀光 《湖泊科学》1994,6(4):298-307
青海湖是我国最大的内陆湖泊,流域面积29661km~(2),水面高程超过3000m,受人为活动影响相对较少,基本上还处于半自然状态。水量平衡计算结果表明,有观测资料的近30年来,青海湖处于负平蘅状态,水位下降了2.96m,平均每年下降10.2cm。如果未来湖区的气候大体保持过去的情况,水位将再下降5.8m,经过57年才能平衡。如果考虑“温室效应”所引起的西北地区未来气候变化,水位亦将下降,每年平均下降10.1cm。  相似文献   

13.
Predicting inter-catchment groundwater flow (IGF) is essential because IGF greatly affects stream water discharge and water chemistry. However, methods for estimating sub-annual IGF and clarifying its mechanisms using minimal data are limited. Thus, we quantified the sub-annual IGF and elucidated its driving factors using the short-term water balance method (STWB) for three forest headwater catchments in Japan (named here catchment A, B and As). Our previous study using the chloride mass balance indicated that annual IGF of catchment A (49.0 ha) can be negligible. Therefore, we calculated the daily evapotranspiration (ET) rate using the Priestley–Taylor expression and the 5-year water balance in catchment A (2010–2014). The sub-annual IGF of the three catchments was then calculated by subtracting the ET rate from the difference between rainfall and stream discharge during the sub-annual water balance periods selected using the STWB. The IGF rates of catchment B (7.0 ha), which is adjacent to catchment A, were positive in most cases, indicating that more groundwater flowed out of the catchment than into it, and exhibited positive linear relationships with rainfall and stream discharge. This suggested that as the catchments became wetter, more groundwater flowed out of catchment B. Conversely, the IGF rates of catchment As (5.3 ha), included in catchment A, were negative in most cases, indicating that more groundwater flowed into the catchment than out from it, and exhibited negative linear relationships with rainfall and stream discharge. Given the topography of the catchments studied, infiltration into the bedrock was the probable reason for the IGF outflow from catchment B. We hypothesized that in catchment As, the discrepancy between the actual hydrological boundary and the surface topographic boundary could have caused an IGF inflow. This study provides a useful tool for determining an IGF model structure to be incorporated into rainfall-runoff models.  相似文献   

14.
The validation of soil water balance models and the evaluation of the quality of the model predictions at field‐scale require time‐series of in situ measured model outputs. In our study, we have validated such a model using a 6‐year period with time‐series of automatically recorded, daily volumetric soil water contents measured with the time‐domain reflectometry with intelligent microelements (TRIME) method and daily pressure heads measured with tensiometers. The comparisons of simulated with measured soil water contents and pressure heads were analysed using the modelling efficiency index (IA) and the square root of the mean square error (RMSE) in order to evaluate the prediction quality of the model. In our study, IA and RMSE, obtained either from the comparison of simulated with measured soil water contents or the comparison of calculated with observed pressure heads, in some cases lead to different results regarding the evaluation of the simulation quality of the soil water balance model. For example, a good fit between simulated and observed soil water contents does not necessarily result in a comparably good fit between the corresponding calculated and measured pressure heads. Therefore, a combined use of both measurement techniques, which takes into account their respective advantages and disadvantages, gives a more complete overview on the simulation quality of the soil water balance model than the single use of one of those techniques. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Harvested sites rarely return to functional ecosystems after abandonment because drainage and peat extraction lower the water table and expose relatively decomposed peat, which is hydrologically unsuitable for Sphagnum moss re‐establishment. Some natural regeneration of Sphagnum has occurred in isolated pockets on traditionally harvested (block‐cut) sites, for reasons that are poorly understood, but are related to natural functions that regulate runoff and evaporation. This study evaluates the water balance of a naturally regenerated cutover bog and compares it with a nearby natural bog of similar size and origin, near Riviere du Loup, Quebec. Water balance results indicated that evapotranspiration was the major water loss from the harvested bog, comprising 92 and 84% of total outputs (2·9 mm day?1) during the 1997 and 1998 seasons, respectively. Despite denser tree cover at the harvested site, evapotranspiration from the natural bog was similar, although less spatially variable. At the harvested site, evaporative losses ranged from 1·9 mm day?1 on raised baulks and roads to 3·6 mm day?1 from moist surfaces with Sphagnum. Although about half of the ditches were inactive or operating at only a fraction of their original efficiency, runoff was still significant at 12 and 24% of precipitation during the 1997 and 1998 study seasons, respectively. This compares with negligible rates of runoff at the natural bog. Thus the cutover bog, although abandoned over 25 years ago, has not regained its hydrological function. This is both a cause and effect of its inability to support renewed Sphagnum regeneration. Without suitable management (e.g. blocking ditches), this site is not likely to improve for a very long time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
Measurements of water vapour flux from semi‐arid perennial woodland (mallee) were made for 3 years using eddy covariance instrumentation. There have been no previous long‐term, detailed measures of water use in this ecosystem. Latent energy flux (LE) on a half hourly basis was the measure of the combined soil and plant evaporation, ‘evapotranspiration’ (ELE) of the site. Aggregation over 3 years of the site measured rain (1136 mm) and the estimated evaporation (794 mm) suggests that 342 mm or 30% of rain had moved into or past the root zone of the vegetation. Above average rainfall during 2011 and the first quarter of 2012 (633 mm, 15 months) would likely have been the period during which significant groundwater recharge occurred. At times immediately after rainfall, ELE rates were the same or exceeded estimates of potential E calculated from a suitably parameterized Penman–Monteith (EPMo) equation. Apparent free water E from plant interception and soil evaporation was about 2.3 mm and lasted for 1.3 days following rainfall in summer, while in autumn, E was 5.1 mm that lasted over 5.4 days. The leaf area index (LAI) needed to adjust a wind function calibrated Penman equation (EPMe) to match the ELE values could be back calculated to generate seasonal change in LAI from 0.12 to 0.46 and compared well with normalized difference vegetation index; r = 0.38 and p = 0.0213* and LAI calculated from digital cover photography. The apparently conservative response of perennial vegetation evaporation to available water in these semi‐arid environments reinforces the conclusion that these ecosystems use this mechanism to survive the reasonably common dry periods. Plant response to soil water availability is primarily through gradual changes in leaf area. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
We examined the water balance of a forested ombrotrophic peatland and adjacent burned peatland in the boreal plain of western Canada over a 3‐year period. Complete combustion of foliage and fine branches dramatically increased shortwave radiation inputs to the peat surface while halting all tree transpiration at the burned site. End‐of‐winter snowpack was 7–25% higher at the burned site likely due to decreased ablation from the tree canopy at the unburned site. Shrub regrowth at the burned site was rapid post‐fire, and shading by the shrub canopy in the burned site approached that of the unburned site within 3 years after fire. Site‐averaged surface resistance to evaporation was not different between sites, though surface resistance in hollows was lower in the burned site. Water loss at both burned and unburned sites is largely driven by surface evaporative losses. Evaporation at the burned site marginally exceeded the sum of pre‐fire transpiration and interception at the unburned site, suggesting that evapotranspiration during the growing season was 20–40 mm greater at the burned peatland. Although the net change in water storage during the growing season was largely unchanged by fire, the lack of low‐density surface peat in the burned site appears to have decreased specific yield, leading to greater water table decline at the burned site despite similar net change in storage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The flow of precipitation from the surface through to groundwater in karst systems is a complex process involving storage in the unsaturated zone and diffuse and preferential recharge pathways. The processes associated with this behaviour are not well understood, despite the prevalence of karst aquifers being used as freshwater supplies. As a result, uncertainty regarding the ecohydrological processes in this geological setting remains large. In response to the need to better understand the impact of woody vegetation on groundwater recharge, annual evapotranspiration (ET) rates and tree water sources were measured for two years above a shallow, fresh karst aquifer. Water use strategies of the co‐occurring Eucalyptus diversifolia subsp. diversifolia Bonpl. and Allocasuarina verticillata (Lam.) L. Johnson were investigated using a monthly water balance approach, in conjunction with measurement of the stable isotopes of water, leaf water potentials and soil matric potentials. The results suggest that it is unlikely groundwater resources are required to sustain tree transpiration, despite its shallow proximity to the soil surface, and that similarities exist between ET losses and the estimated long‐term average rainfall for this area. Irrespective of stand and morphological differences, E. diversifolia and A. verticillata ET rates showed remarkable convergence, demonstrating the ability of these co‐occurring species to maximise their use of the available precipitation, which avoids the requirement to differentiate between these species when estimating ET at a landscape scale. We conclude that the water holding capacity of porous geological substrates, such as those associated with karst systems, will play an important role in equilibrating annual rainfall variability and should be considered when assessing ecohydrological links associated with karst systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The present effect of watershed subdivision on simulated water balance components using the thoroughly tested Soil and Water Assessment Tool (SWAT) model has been evaluated for the Nagwan watershed in eastern India. Observed meteorological and hydrological data (daily rainfall, temperature, relative humidity and runoff) for the years 1995 to 1998 were collected and used. The watershed and sub‐watershed boundaries, slope and soil texture maps were generated using a geographical information system. A supervised classification method was used for land‐use/cover classification from satellite imagery of 1996. In order to study the effect of watershed subdivision, the watershed was spatially defined into three decomposition schemes, namely a single watershed, and 12 and 22 sub‐watersheds. The simulation using the SWAT model was done for a period of 4 years (1995 to 1998). Results of the study showed a perfect water balance for the Nagwan watershed under all of the decomposition schemes. Results also revealed that the number and size of sub‐watersheds do not appreciably affect surface runoff. Except for runoff, there was a marked variation in the individual components of the water balance under the three decomposition schemes. Though the runoff component of the water balance showed negligible variation among the three cases, variations were noticed in the other components: evapotranspiration (5 to 48%), percolation (2 to 26%) and soil water content (0·30 to 22%). Thus, based on this study, it is concluded that watershed subdivision has a significant effect on the water balance components. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract

The water balance during a period of one year (15 October 1990–15 October 1991) was determined at an experimental site in the Areuse River delta (Switzerland). The groundwater recharge rates were found to be 36 and 33% of total precipitation according to evapotranspiration estimates based on the Primault (1962) and the Penman-Monteith methods, respectively. Variations in the water storage were obtained by weekly measurements with a neutron probe. Observed hydraulic gradients indicated a zero-flux plane between depths of 0.55 and 1.02 m that separated the infiltration zone from the zone of evapotranspiration in all seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号