首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent climate change projections suggest that negative impacts on flood control and water supply functions and on existing and future ecosystem restoration projects in south Florida are possible. An analysis of historical rainfall and temperature data of the Florida peninsula indicates that there were no discernible trends in both the long-term record and during the more recent period (1950–2007). A comparison of General Circulation Model (GCM) results for the 20th century with the historical data shows that many of the GCMs do not capture the statistical characteristics of regional rainfall and temperature regimes in south Florida. Investigation of historical sea level data at Key West finds evidence for an increase in the occurrence and variance of maximum sea level events for the period 1961–2008 in relation to 1913–1960, along with a shift of energy from shorter to longer timescales. In order to understand the vulnerability of the water management system in south Florida in response to changing precipitation and evapotranspiration forcing, a sensitivity analysis using a regional-scale hydrologic and water management model is conducted. Model results suggest that projected climate change has potential to reduce the effectiveness of water supply and flood control operations for all water sectors. These findings emphasize that questions on the potential impacts of climate change need to be investigated with particular attention paid to the uncertainties of such projections.  相似文献   

2.
3.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

4.
ABSTRACT

Climate change may have significant consequences for water resources availability and management at the basin scale. This is particularly true for areas already suffering from water stress, such as the Mediterranean area. This work focused on studying these impacts in the Llobregat basin supplying the Barcelona region. Several climate projections, adapted to the spatiotemporal resolution of the study, were combined with a daily hydrological model to estimate future water availability. Depending on the scenario and the time period, different assessment indicators such as reliability and resilience showed a future decrease in water resources (up to 40%), with drought periods becoming more frequent. An additional uncertainty analysis showed the high variability of the results (annual water availability ranging from 147 hm3/year to 274 hm3/year), thus making accurate projections difficult. Finally, the study illustrates how climate change could be taken into account to provide adaptive measures for the future.
Editor M.C. Acreman; Associate editor J. Thompson  相似文献   

5.
A brief review of boundary methods is presented. Emphasis is placed on alternatives to boundary integral equations. Different theoretical questions required to give a firm foundation to these procedures are discussed. Extensions to non-linear problems are explained. Examples of application to fluid problems are included.  相似文献   

6.
7.
Understanding the impacts of climate change and human activity on the hydrological processes in river basins is important for maintaining ecosystem integrity and sustaining local economic development. The objective of this study was to evaluate the impact of climate variability and human activity on mean annual flow in the Wei River, the largest tributary of the Yellow River. The nonparametric Mann–Kendall test and wavelet transform were applied to detect the variations of hydrometeorological variables in the semiarid Wei River basin in the northwestern China. The identifications were based on streamflow records from 1958 to 2008 at four hydrological stations as well as precipitation and potential evapotranspiration (PET) data from 21 climate stations. A simple method based on Budyko curve was used to evaluate potential impacts of climate change and human activities on mean annual flow. The results show that annual streamflow decreased because of the reduced precipitation and increased PET at most stations. Both annual and seasonal precipitation and PET demonstrated mixed trends of decreasing and increasing, although significant trends (P < 0.05) were consistently detected in spring and autumn at most stations. Significant periodicities of 0.5 and 1 year (P < 0.05) were examined in all the time series. The spectrum of streamflow at the Huaxian station shows insignificant annual cycle during 1971–1975, 1986–1993 and 1996–2008, which is probably resulted from human activities. Climate variability greatly affected water resources in the Beiluo River, whereas human activities (including soil and water conservation, irrigation, reservoirs construction, etc.) accounted more for the changes of streamflow in the area near the Huaxian station during different periods. The results from this article can be used as a reference for water resources planning and management in the semiarid Wei River basin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Integrated water resources management: Concepts and issues   总被引:1,自引:0,他引:1  
After the describing the historical developments that led the development of Integrated Water Resources Management (IWRM), the paper defines this important concept. It subsequently deals with the thorny issue of water security as well as water conflict, after which the major issues over which thus far no consensus has been achieved are briefly reviewed. The paper concludes with an analysis of the role of the IAHS International Commission on Water Resources Systems (ICWRS) in promoting IWRM.  相似文献   

10.
11.
12.
Streamflow series of five hydrological stations were analyzed with aim to indicate variability of water resources in the Tarim River basin. Besides, impacts of climate changes on water resources were investigated by analyzing daily precipitation and temperature data of 23 meteorological stations covering 1960–2005. Some interesting and important results were obtained: (1) the study region is characterized by increasing temperature, however, only temperature in autumn is in significant increasing trend; (2) precipitation changes present different properties. Generally, increasing precipitation can be detected. However, only the precipitation in the Tienshan mountain area is in significant increasing trend. Annual streamflow of major rivers of the Tarim River basin are not in significant trends, except that of the Akesu River which is in significantly increasing trend. Due to the geomorphologic properties of the Tienshan mountain area, precipitation in this area demonstrates significant increasing trend and which in turn leads to increasing streamflow of the Akesu River. Due to the fact that the sources of streamflow of the rivers in the Tarim River basin are precipitation and melting glacial, both increasing precipitation and accelerating melting ice has the potential to cause increasing streamflow. These results are of practical and scientific merits in basin-scale water resource management in the arid regions in China under the changing environment.  相似文献   

13.
Perspectives on Mexican ground water resources   总被引:2,自引:0,他引:2  
Marin LE 《Ground water》2002,40(6):570-571
  相似文献   

14.
Perspectives on Turkish ground water resources   总被引:2,自引:0,他引:2  
  相似文献   

15.
Considerable progresses have been accomplished in recent years on two of the probability based subjects in water resources. Many stochastic methods have been developed for data generation, forecasting and simulation. Likewise, new techniques have been proposed for comprehensive evaluation of the reliability of water systems, accounting for not only the occurrence frequency of rainfall or flood but also other contributing factors. A general view of stochastic methods and reliability analysis is given in this presentation.  相似文献   

16.
17.
Perspectives on Chinese ground water resources   总被引:1,自引:0,他引:1  
Jiao JJ  Wen D 《Ground water》2004,42(4):488-490
  相似文献   

18.
During the past century, while world population tripled, the use of water increased sixfold. Irrigation accounts for 70% of global water withdrawals, industry for 20%, and municipal use for 10%. To meet the water resources challenges, a series of transitions is under way, with major implications for water management. The present paper underlines the major issues and the new role of engineers in charge of development and project management.  相似文献   

19.
20.
Urban areas of developing countries are facing increasing water scarcity and it is possible that this problem may be further aggravated due to rapid changes in the hydro-environment at different scales, like those of climate and land-cover. Due to water scarcity and limitations to the development of new water resources, it is prudent to shift from the traditional ‘supply based management’ to a ‘demand management’ paradigm. Demand management focuses on measures that make better and more efficient use of limited supplies, often at a level significantly below standard service levels. This paper particularly focuses on the intermittent water supplies in the cities of developing countries. Intermittent water supplies need to be adopted due to water scarcity and if not planned properly, results in inequities in water deliveries to consumers and poor levels of service. It is therefore important to recognise these realities when designing and operating such networks.The standard tools available for design of water supply systems often assume a continuous, unlimited supply and the supplied water amount is limited only be the demand, making them unsuitable for designing intermittent supplies that are governed by severely limited water availability. This paper presents details of new guidelines developed for the design and control of intermittent water distribution systems in developing countries. These include a modified network analysis simulation coupled with an optimal design tool. The guidelines are driven by a modified set of design objectives to be met at least cost. These objectives are equity in supply and people driven levels of service (PDLS) expressed in terms of four design parameters namely, duration of the supply; timings of the supply; pressure at the outlet (or flow-rate at outlet); and others such as the type of connection required and the locations of connections (in particular for standpipes). All the four parameters are calculated using methods and techniques that recognise the relationship between outflow at a water connection and the pressure experienced at that connection. The paper presents a case study where it is demonstrated that the new guidelines can provide an equitable and acceptable level of service throughout the design horizon of the project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号