首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《水文科学杂志》2013,58(6):899-915
Abstract

The results are described of 16 years operation of a measuring station for the automatic recording of water discharge, bed load and suspended sediment transport in the Rio Cordon catchment, a small alpine basin (5 km2) located in northeastern Italy. Hillslope erosion processes were investigated by surveying individual sediment sources repeatedly. Annual and seasonal variations of suspended sediment load during the period 1986–2001 are analysed along with their contribution to the total sediment yield. The results show that suspended load accounted for 76% of total load and that most of the suspended sediment transport occurred during two flood events: an extreme summer flash flood in September 1994 (27% of the 16-years total suspended load) and a snowmelt-induced event in May 2001 accompanied by a mud flow which fed the stream with sediments. The role of active sediment source areas is discussed in relation to the changes in flood peak—suspended load trends which became apparent after both the 1994 and the 2001 events.  相似文献   

2.
ABSTRACT

To assess seasonal patterns of suspended sediment load and its erosion–transport interactions, 17 years of river monitoring data from the Isser River Basin (northwest Algeria) were studied, considering continuous and event-scale approaches. The results show significant differences in sediment yield and transport processes between dry and wet periods. A rate of 8 t ha?1 year?1 was estimated from continuous analysis, with values of 4.3 and 13 t ha?1 year?1 for wet and dry periods, respectively. Estimates of soil delivery ratio pointed to higher values during dry periods and the dominance of hillslope erosion processes. At the event scale, the hysteresis loops confirmed these seasonal patterns in transport dynamics. The calibration of the MUSLE model highlighted the severity of rainfall during the dry period. These results emphasize the importance of seasonality in erosion and transport processes with special relevance in terms of climate change predictions.  相似文献   

3.
: During this century, the characteristics of the Upper Rhone River discharge, flowing into Lake Geneva, have been altered in response to the changes which have occurred in its watershed. Principally, numerous hydroelectric dams have been constructed on the course of the Rhone River tributaries. At present the major reservoirs can hold about 1220106m3 of water, which represents 1/5 of the total annual Rhone River flow. Flow regime characteristics of the river have been modified by the dam operations. Water is released from reservoirs during winter and stored in summer. Large floods have also been reduced in amplitude and frequency. From the available literature data, sediment rating curves have been calculated and used to estimate the evolution of the sediment load from the Rhone River to Lake Geneva. They show that sediment input has decreased by at least a factor 2. This reduction has impacted the occurrence of underflows along the lake bottom, due to the reduction of sediment-laden floods, which in turn may have considerable negative effects on the reoxygenation of Lake Geneva deep waters.  相似文献   

4.
The hydrographic, climate, hydrological, and landscape features of the Huanghe R. Basin are considered. Water runoff and suspended sediment load in the Huanghe R. are shown to have dropped significantly in 1950–2009 under the effect of regional climate changes and economic activity in the basin. Water balance method and the concept of flow transport competency were used to assess the contribution of natural and anthropogenic factors (decline in precipitation, water withdrawal for economic needs, and the effect of reservoirs) to the decrease in river water runoff and suspended sediment load.  相似文献   

5.
Data on sediment flux at three hydrologic stations from the 1950s to 2006 are utilized to study the decadal,annual,and monthly variations in suspended sediment load delivered from the Pearl River to the ocean.Results show that variations in sediment flux from three main tributaries,including the West River,the North River and the East River,are spatially non-uniform.Since nearly 90%of the suspended sediment load comes from the West River,its variation has dominated the overall tendency of sediment flux in the entire Pearl River.Although a significant decreasing trend exists in the annual variation of the total sediment flux,the decadal change can be divided into an increasing phase and a decreasing phase,with the turning point between the two phases in the late 1980s.From the 1950s to the 1980s,the average annual river sediment flux increased by 30.43%.However,sediment flux has decreased significantly since the 1990s,with the average sediment flux being 38.60%less in the 2000s than that in the 1950s.The current sediment flux is also 52.93%less than its peak in the 1980s. The monthly variation pattern of the suspended sediment load transport to the sea is more interesting. For the West River,all months show a decreasing trend,and for most months the reduction values are significant.However,for the East River the sediment load shows a decrease trend in the dry season and an increase trend in the wet season.The method of regression analysis was used to study the influence of precipitation in the variation on the sediment flux.It was found that the climate change is not the main driving force behind the variation in suspended sediment load.Before the 1990s, intensive land use destroyed the vulnerable ecosystem of the upper Pearl River,and speeded up the process of rocky desertification.Consequently,aggravated soil erosion caused an increase in suspended sediment load.However,sediment retention within reservoirs had begun to play a dominant role after the massive construction of large dams after 1990,and resulted in a decrease in the suspended sediment load delivered to the ocean.  相似文献   

6.
A. O. Pektas 《水文科学杂志》2017,62(14):2415-2425
This study examines the employment of two methods, multiple linear regression (MLR) and an artificial neural network (ANN), for multistep ahead forecasting of suspended sediment. The autoregressive integrated moving average (ARIMA) model is considered for one-step ahead forecasting of sediment series in order to provide a comparison with the MLR and ANN methods. For one- and two-step ahead forecasting, the ANN model performance is superior to that of the MLR model. For longer ranges, MLR models provide better accuracy, but there is an important assumption violation. The Durbin-Watson statistics of the MLR models show a noticeable decrease from 1.3 to 0.5, indicating that the residuals are not dependent over time. The scatterplots of the three methods (MLR, ARIMA and ANN) for one-step ahead forecasting for the validation period illustrate close fits with the regression line, with the ANN configuration having a slightly higher R2 value.  相似文献   

7.
Suspended sediment particles contained in inflows of water systems of hydropower plants (HPPs) cause hydro-abrasive erosion of the hydraulic turbines and structures leading to significant maintenance costs, efficiency reductions, and downtime. Relevant parameters such as suspended sediment concentration (SSC), particle size distribution (PSD), shape, and mineralogical composition were measured with an online multi-frequency acoustic instrument and based on manually taken samples from the end of the sand trap of the Toss HPP in the Himalayan region, India. In the laboratory, the samples were analyzed using the gravimetric method, laser diffraction, turbidity, dynamic digital image processing, scanning electron microscope, petrography analysis, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The online instrument and the samples provided measurement results at a single point. To investigate vertical gradients in concentration and particle sizes, additional samples were collected 9 times at 7 relative water depths. The SSC, most particle sizes, and particle shape were found to be evenly distributed over depth except d90, i.e. the diameter which is not exceeded by 90% of the particle mass. d90 measured at 76% of the water depth was in the range of fine sand and was multiplied by 1.05 to obtain an average value representative for the entire depth. Improved methodologies to quantify both particle shape and size in an analytical model for hydro-abrasive erosion are proposed. Also, the PSD measuring performance of laser diffraction and dynamic imaging was studied and similar values of the median particle sizes were obtained from both instruments. Further, multi-frequency acoustic, turbidity and laser diffraction techniques were found suitable for SSC measurement at the test case HPP.  相似文献   

8.
The solute and suspended‐sediment load following five rainstorms (2005–2007) with varied intensities were studied at the Vernegà experimental watershed, north‐western Spain. Two land‐use areas are located within this watershed, the upstream one (forest) with 160 ha a 100% forested area, and the downstream one (agricultural) with 97 ha being 9 ha conventional agricultural field and 88 ha forest. This study investigates the capacity of each land‐use to yield water, suspended sediment concentration (SSC) and dissolved solid concentration (DSC). The hypothesis is that DSC and SSC from the agricultural area are greater than DSC and SSC of the forest area. Results showed that the agriculture area produced significantly greater mean DSC than in the forest area, the main contribution was the Ca2+ (24·68 ± 46·52 mg l?1) ion at the agricultural area. A long‐term sediment production rate at the agricultural outlet was calculated (69·1 tonnes per 100 years) based on the total sediment discharge (TSD) and the recurrence interval of the largest event of the five rainstorms (October 2005). Geographic information system (GIS) spatial data layers of the watershed were produced to determine the relation of tracks, landforms, slopes and forest management to SSC yield in the forest outlet (133·89 ± 308·14 mg l?1) during the five rainstorms. Agriculture practices are the main cause of soil erosion at the study area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Ian G. Droppo 《水文研究》2001,15(9):1551-1564
Although cohesive suspended sediment is now known to be transported primarily as flocculated material, there is still a misconception of what constitutes suspended sediment. Flocs represent a complex matrix of microbial communities, organic particles (e.g. detritus, extracellular polymers and cellular debris), inorganic particles (e.g. clays and silts) and substantial interfloc spaces (pores), which allow for the retention or flow through of water. Flocculation results in significant alteration of the hydrodynamics of the constituent particles (by modifying their effective size, shape, density and porosity), thereby affecting the transport of sediment and associated contaminants. The composition and structure of a floc is in a continuous state of change as the medium in which it is transported provides the floc with further building materials, energy, nutrients and chemicals for biological growth, chemical reactions and morphological development. As such, a floc's physical (e.g. transport), chemical (e.g. contaminant adsorption) and biological (community development and contaminant biotransformation) behaviour are also in a continuous state of change, with concomitant effects on their aquatic environment as a whole. Although it is recognized that floc form will influence floc behaviour, there is still a basic lack of knowledge of the complex links between the structural components of a floc and how their individual properties and behaviours in combination with others will influence a floc's physical, chemical and biological behaviour. This paper provides a comprehensive conceptual model that links the many interrelated structural components of typical flocs and their interrelated behavioural aspects, in order to enhance our understanding of what constitutes suspended sediment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

The predictive capability of a new artificial intelligence method, random subspace (RS), for the prediction of suspended sediment load in rivers was compared with commonly used methods: random forest (RF) and two support vector machine (SVM) models using a radial basis function kernel (SVM-RBF) and a normalized polynomial kernel (SVM-NPK). Using river discharge, rainfall and river stage data from the Haraz River, Iran, the results revealed: (a) the RS model provided a superior predictive accuracy (NSE = 0.83) to SVM-RBF (NSE = 0.80), SVM-NPK (NSE = 0.78) and RF (NSE = 0.68), corresponding to very good, good, satisfactory and unsatisfactory accuracies in load prediction; (b) the RBF kernel outperformed the NPK kernel; (c) the predictive capability was most sensitive to gamma and epsilon in SVM models, maximum depth of a tree and the number of features in RF models, classifier type, number of trees and subspace size in RS models; and (d) suspended sediment loads were most closely correlated with river discharge (PCC = 0.76). Overall, the results show that RS models have great potential in data poor watersheds, such as that studied here, to produce strong predictions of suspended load based on monthly records of river discharge, rainfall depth and river stage alone.  相似文献   

11.
ABSTRACT

Ensemble machine learning models have been widely used in hydro-systems modeling as robust prediction tools that combine multiple decision trees. In this study, three newly developed ensemble machine learning models, namely gradient boost regression (GBR), AdaBoost regression (ABR) and random forest regression (RFR) are proposed for prediction of suspended sediment load (SSL), and their prediction performance and related uncertainty are assessed. The SSL of the Mississippi River, which is one of the major world rivers and is significantly affected by sedimentation, is predicted based on daily values of river discharge (Q) and suspended sediment concentration (SSC). Based on performance metrics and visualization, the RFR model shows a slight lead in prediction performance. The uncertainty analysis also indicates that the input variable combination has more impact on the obtained predictions than the model structure selection.  相似文献   

12.
Dam construction greatly alters the channel boundary of rivers, making the dammed river system a human‐controlled system. Based on hydrometric data in the upper Changjiang River basin, the change in behaviour of sediment transport of some dammed rivers was studied. As a result, some phenomena of threshold and complex response were found. When the coefficient (Cr,a) of actual runoff regulation by reservoirs, defined as the ratio of total capacity of reservoirs to annual runoff input, is smaller than 10%, suspended sediment load at Yichang station, the control station of the Changjiang River, shows a mild decreasing trend. When this coefficient becomes larger than 10%, suspended sediment load decreases sharply. The coefficient of 10% can be regarded as a threshold. The Cr,a of 10% is also a threshold, when the variation of suspended sediment concentration (SSC) with Cr,a at Yichang station is considered. The impacts of reservoir construction can be divided into several stages, including road construction, dam building and closure, water storage and sediment trapping. During these stages, some complex response was identified. At the station below the dam, SSC increases and reaches a maximum, and then declines sharply. This phenomenon was found on the main‐stem and several major tributaries of the upper Changjiang River. In the Minjiang River, where a series of dams were built successively, the response of SSC is more complicated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Sediment fingerprinting appears to offer a valuable alternative to direct monitoring for elucidating the provenance of suspended sediment and the relative importance of spatial zones or subcatchments comprising larger (>500 km2) drainage basins. Against this background, a quantitative composite fingerprinting technique, incorporating both statistically verified multicomponent signatures and a multivariate sediment-mixing model, has been employed to determine the spatial origin of contemporary suspended sediment transported from the upper and middle reaches of the River Exe (601 km2) and River Severn (4325 km2) basins, UK. Spatial origin is addressed in terms of the relative contribution from three distinct geological subareas constituting each study basin. The consistency of the composite fingerprinting approach is examined using the estimates for mean and seasonal variations in source area contributions and also a comparison between the results obtained for individual flood events and alternative lines of evidence provided by flood travel times and the spatial distribution of precipitation. It is argued that fingerprinting estimates for sediment provenance are consistent with existing information on suspended sediment yields from different subcatchments within the study basins, although in the Severn, the role of storage and remobilization in producing signature ‘averaging’ may complicate comparison of the fingerprinting data with typical floodwater routing times. Validation represents the greatest problem for the cost–benefit of fingerprinting and scope still exists for further refinement of the procedures involved. © 1998 John Wiley & Sons, Ltd.  相似文献   

14.
Fine sediment deposition in streambeds can reduce pore water fluxes and the overall rate of hyporheic exchange, producing deleterious effects on benthic and hyporheic ecological communities. To increase understanding of the factors that control the reduction of hyporheic exchange by fine sediment deposition, we conducted experiments in a laboratory flume to observe changes in the rates of solute exchange and kaolinite clay deposition as substantial amounts of kaolinite accumulated in the streambed. Two long‐term experiments were conducted, with durations of 14 days and 29 days. Use of a laboratory flume system allowed steady stream flow conditions to be maintained throughout both experiments, and alternating injections of known quantities of kaolinite and a sodium chloride tracer were used to assess the effect of clay accumulation on hyporheic exchange directly. In the first experiment, there was no bed sediment transport and kaolinite deposition formed a highly clogged near‐surface layer that greatly reduced hyporheic exchange. Application of a fundamental model for advective hyporheic exchange indicated that the effective permeability and porosity of the streambed decreased substantially during the course of the experiment. In the second experiment, the kaolinite was prepared with different surface properties to be more mobile, and the experiment was conducted with a small degree of bed sediment transport. As a result, no distinct clogged layer developed, and the rate of hyporheic exchange was found to remain approximately constant throughout the experiment (29 days). These results indicate that increasing fine sediment loads, e.g. those that occur from changes in land use, can have substantially different impacts on hyporheic exchange and associated ecological processes depending on the stream flow conditions, the rate and frequency of bed sediment transport, and the extent of interaction of the introduced fines with bed sediments. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Rating curves are widely used for directly assessing changes in the suspended sediment delivery process and indirectly for estimating total yields. Four sampling methods were simulated over a 31-day record of suspended sediment from the North Fork of the Mad River near Korbel, California. The position and size of the four groups of plotted slope/intercept pairs indicated differences in bias and variance among the methods. Estimates of total yield for the 31-day period and for storms of three sizes were also biased according to sampling method. A standard bias-correcting technique improved yield estimates, but did not remove sampling bias uniformly. Methods of data collection have a large and systematic effect on the estimation of rating-curve parameters and on estimates of suspended sediment yield. Differences attributed to land management may, in fact, result from changes in sampling methods.  相似文献   

16.
The sediment carrying capacity is one of the fundamental issues in sediment simulation.It is of great importance both in theory and practice to develop process-based approaches for the sediment carrying capacity for a wider range of silt-sand sediment.The current study focuses on the approach for depth-averaged concentration of silt-sand sediment under non-breaking wave conditions.By integrating process-based suspended sediment concentration(SSC) profiles,new synthetic expressions for depth-aver...  相似文献   

17.
ABSTRACT

Suspended sediment load (SSL) is one of the essential hydrological processes that affects river engineering sustainability. Sediment has a major influence on the operation of dams and reservoir capacity. This investigation is aimed at exploring a new version of machine learning models (i.e. data mining), including M5P, attribute selected classifier (AS M5P), M5Rule (M5R), and K Star (KS) models for SSL prediction at the Trenton meteorological station on the Delaware River, USA. Different input scenarios were examined based on the river flow discharge and sediment load database. The performance of the applied data mining models was evaluated using various statistical metrics and graphical presentation. Among the applied data mining models, the M5P model gave a superior prediction result. The current and one-day lead time river flow and sediment load were the influential predictors for one-day-ahead SSL prediction. Overall, the applied data mining models achieved excellent predictions of the SSL process.  相似文献   

18.
Alluvial gullies are often formed in dispersible sodic soils along steep banks of incised river channels. Field data collected by Shellberg et al. (Earth Surface Processes and Landforms 38: 1765–1778, 2013) from a gully outlet in northern Australia showed little hysteresis between water discharge and fine (<63 µm) and coarse (>63 µm) suspended sediment, indicating transport‐limited rather than source‐limited conditions. The major source of the fine (silt/clay) component was the sodic soils of upstream gully scarps, and the coarser (sand) component was sourced locally from channel bed material. In this companion paper at the same study site, a new method was developed for combining the settling velocity characteristics of these two sediment source components to estimate the average settling velocity of the total suspended sediment. This was compared to the analysis of limited sediment samples collected during flood conditions. These settling velocity data were used in the steady‐state transport limit theory of Hairsine and Rose (Water Resources Research 28: 237–243, 245–250, 1992) that successfully predicted field data of concentrations and loads at a cross‐section, regardless of the complexity of transport‐limited upstream sources (sheet erosion, scalds, rills, gullies, mass failure, bank and bed erosion, other disturbed areas). The analysis required calibration of a key model parameter, the fraction of total stream power (F ≈ 0.025) that is effective in re‐entraining sediment. Practical recommendations are provided for the prediction of sediment loads from other alluvial gullies in the region with similar hydrogeomorphic conditions, using average stream power efficiency factors for suspended silt/clay (Fw ≈ 0.016) and sand (Fs ≈ 0.038) respectively, but with no requirement for field data on sediment concentrations. Only basic field data on settling velocity characteristics from soil samples, channel geometry measurements, estimates of water velocity and discharge, and associated error margins are needed for transport limit theory predictions of concentration and load. This theory is simpler than that required in source‐limited situations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
The wide range of studies describing the role of bank erosion in fluvial sediment supply have mostly lumped amounts of bank erosion into coarse temporal units, such as years. This paper investigates sediment yields from individual bank erosion events within the upper River Severn, UK (basin area 380 km2). Manual erosion pins and photo-electronic erosion pins were used to estimate bank erosion, and turbidity meters were used to determine suspended sediment transport. At the annual time-scale, the silt-clay fraction of bank-derived sediment accounted for an equivalent of 17 per cent of the suspended load, increasing to an average of 38 per cent at the monthly timescale, and then to an average of 64 per cent at the event timescale. This research highlighted that for an upland catchment, bank erosion was an important supply of suspended sediment, and that for some flood events bank erosion can supply more sediment than is transported. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Partial duration series methods have been used to estimate the T-year event ZT of a hydrological variable. In this paper the maximum likelihood estimate of ZT is considered for the model with a Poisson number of peaks and independently, exponentially distributed peak magnitudes. The mean and the variance of are evaluated by finite summations. Approximations to the bias of are discussed. Although the use of a first-order asymptotic expression for var( ) has been criticized by earlier workers, the results from this study indicate that the error is small for the most common values of T. It is further shown that small departures from the assumed model can have a large impact on var( ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号