首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
环太湖河流进出湖水量及污染负荷(2000-2002年)   总被引:22,自引:5,他引:22  
翟淑华  张红举 《湖泊科学》2006,18(3):225-230
天然水域,尤其是富营养的浅水湖泊,沉积物中磷的释放是蓝藻水华发生、形成和持续生长的重要因素.分析沉积物中磷的赋存形态转化及其潜在生态效应,有助于理解沉积物中磷的迁移转化过程及其与湖泊富营养化之间的关系.本文综述国内湖泊水域中磷的主要形态、来源和转化过程以及其生物有效性的研究进展.重点讨论了近5年来中国东部浅水湖泊沉积物磷的形态分析、转化和生物有效性评估的现状,以及沉积物中磷形态与浅水湖泊富营养化之间的潜在联系.  相似文献   

2.
The curve number method is a simple one parameter (the curve number) rainfall runoff model. While its theoretical underpinning has been questioned it remains a powerful hydrological tool in the absence of detailed data and is therefore used extensively in hydrological models. This study aims to characterize the variation in maximum retention values (S), which underlie curve numbers, for a range of agricultural treatments across a large spatial area in New South Wales (NSW), Australia. The data used for the analysis spans several decades of rainfall runoff observations. A range of different derivation methods result in variation in mean and variance of S. In particular, methods that emphasize the larger storms result in greater S and thus lower runoff. For larger spatial scales, emphasis on larger storms gives more reliable estimates of S. Systematic variation in S arises from variations in treatment, pre‐runoff soil moisture, rainfall depth, and variations in cover. On the basis of the analysis, a table of curve number values for different land uses found in NSW is presented. The resulting distributions of S and curve numbers provide guidance for rainfall runoff modelling studies in the agricultural important areas of NSW. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
This work quantifies, using ADP and rating curve techniques, the instantaneous outflows at estuarine interfaces: higher to middle estuary and middle to lower estuary, in two medium‐sized watersheds (72 000 and 66 000 km2 of area, respectively), the Jaguaribe and Contas Rivers located in the northeastern (semi‐arid) and eastern (tropical humid) Brazilian coasts, respectively. Results from ADP showed that the net water balances show the Contas River as a net water exporter, whereas the Jaguaribe River Estuary is a net water importer. At the Jaguaribe Estuary, water retention during flood tide contributes to 58% of the total volume transferred during the ebb tide from the middle to lower estuary. However, 42% of the total water volume (452 m3 s?1) that entered during flood tide is retained in the middle estuary. In the Contas River, 90% of the total water is retained during the flood tide contributing to the volume transported in the ebb tide from the middle to the lower estuary. Outflows obtained with the rating curve method for the Contas and Jaguaribe Rivers were uniform through time due to river flow normalization by dams in both basins. Estimated outflows with this method are about 65% (Contas) and 95% (Jaguaribe) lower compared to outflows obtained with ADP. This suggests that the outflows obtained with the rating curve method underestimate the net water balance in both systems, particularly in the Jaguaribe River under a semi‐arid climate. This underestimation is somewhat decreased due to wetter conditions in the Contas River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

This study provides a spatio-temporal analysis of the great floods that occurred in South America in 1983 using hydrometeorological data and outputs from a continental-scale hydrological-hydrodynamic model. In the extreme year 1983, there were three main flooding periods (February, June and July) in many South American river basins, such as the Araguaia, Tocantins, São Francisco, Uruguay, La Plata and its tributaries, resulting in high discharge of the Paraguay River for many months. Depth–area–duration curves show that 3-day precipitation events in northern regions of South America were among the largest 15 events in the period 1980–2015 but only for specific locations, whereas in southern areas, the most extreme events in the same period were for larger durations (≥7-day precipitation). Modelled total export of water volume to the oceans indicates that rivers draining to the South Atlantic reached an anomaly of 3.7 during 1983, followed by 1998 (1.9) and 1992 (1.1), all of them corresponding to El Niño years.  相似文献   

5.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   

7.
8.
In most regions of the world overgrazing plays a major role in land degradation and thus creates a major threat to natural ecosystems. Several feedbacks exist between overgrazing, vegetation, soil infiltration by water and soil erosion that need to be better understood. In this study of a sub‐humid overgrazed rangeland in South Africa, the main objective was to evaluate the impact of grass cover on soil infiltration by water and soil detachment. Artificial rains of 30 and 60 mm h?1 were applied for 30 min on 1 m2 micro‐plots showing similar sandy‐loam Acrisols with different proportions of soil surface coverage by grass (Class A: 75–100%; B: 75–50%; C: 50–25%; D: 25–5%; E: 5–0% with an outcropping A horizon; F: 0% with an outcropping B horizon) to evaluate pre‐runoff rainfall (Pr), steady state water infiltration (I), sediment concentration (SC) and soil losses (SL). Whatever the class of vegetal cover and the rainfall intensity, with the exception of two plots probably affected by biological activity, I decreased regularly to a steady rate <2 mm h?1 after 15 min rain. There was no significant correlation between I and Pr with vegetal cover. The average SC computed from the two rains increased from 0·16 g L?1 (class A) to 48·5 g L?1 (class F) while SL was varied between 4 g m?2 h?1 for A and 1883 g m?2 h?1 for F. SL increased significantly with decreasing vegetal cover with an exponential increase while the removal of the A horizon increased SC and SL by a factor of 4. The results support the belief that soil vegetation cover and overgrazing plays a major role in soil infiltration by water but also suggest that the interrill erosion process is self‐increasing. Abandoned cultivated lands and animal preferred pathways are more vulnerable to erosive processes than simply overgrazed rangelands. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We develop a probabilistic model for estimating the tsunami hazard along the coast of New Zealand due to plate-interface earthquakes along the South American subduction zone. To do this we develop statistical and physical models for several stages in the process of tsunami generation and propagation, and develop a method for combining these models to produce hazard estimates using a Monte-Carlo technique. This process is largely analogous to that used for seismic hazard modelling, but is distinguished from it by the use of a physical model to represent the tsunami propagation, as opposed to the use of empirical attenuation models for probabilistic seismic hazard analysis.  相似文献   

10.
Conditional daily rainfields were generated using collocated raingauge radar data by a kriging interpolation method, and disaggregated into hourly rainfields using variants of the method of fragments. A geographic information system (GIS)-based distributed rainfall–runoff model was used to convert the hourly rainfields into hydrographs. Using the complete radar rainfall as input, the rainfall–runoff model was calibrated based on storm events taken from nested catchments. Performance statistics were estimated by comparing the observed and the complete radar rainfall simulated hydrographs. Degradation in the hydrograph performance statistics by the simulated hourly rainfields was used to identify runoff error propagation. Uncertainty in daily rainfall amounts alone caused higher errors in runoff (depth, peak, and time to peak) than those caused by uncertainties in the hourly proportions alone. However, the degradation, which reduced with runoff depth, caused by the combined uncertainties was not significantly different from that caused by the uncertainty of amounts alone.  相似文献   

11.
This study examines the effect of water repellency on controlling temporal variability of runoff generation mechanisms and soil detachment on metamorphic derived soils under dry‐Mediterranean climate. The research is carried out in an unburnt Mediterranean hillslope in souther Spain characterized by a patchy vegetation pattern and shallow soils. The Water Drop Penetration Time test (WDPT) is applied to measure water repellency at the end of summer (Sep‐2008), mid autumn (Nov‐2008) and mid winter (Feb‐2009). Rainfall simulations were used to obtain runoff generation and soil detachment in the same periods of time. The main shrub specie is Cistus monspeliensis which leaves a load of litter during the summer due to the lack of water. This great amount of organic material is accumulated under the shrubs triggering an extreme water repellence (WDPT > 6,000 s) that limits infiltration processes. This process is enforced due to the low soil water content at the end of dry season. Certain water repellency (WDPT > 1,500 s) is also observed on bare soil as consequence of their sandier texture and the accumulation of annual plants which die at the end of the wet season. Soil moisture increases during the autumn and water repellency disappears in both shrub and bare soil at the middle of the wet season (WDPT < 5 s). The main consequence is that the temporal trend of water repellency controls the mechanism and frequency of runoff generation and, hence, soil detachment. At the end of the summer, Hortonian mechanisms predominates when water repellency is extreme, even in soils under Cistus monspeliensis where runoff generation can reach higher peaks of overland flow and sediment concentration. Conversely, only the saturation of soil could generate runoff during the wet season being this quite less frequent in bare soil and absent in shrub. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
基于ELCOM-CAEDYM模型的淀山湖营养物投入响应关系的模拟   总被引:1,自引:2,他引:1  
卢嘉  陈小华  李小平 《湖泊科学》2011,23(3):366-374
针对淀山湖严重富营养化的问题,应用三维水动力-水质耦合模型ELCOM-CAEDYM对淀山湖水质进行了模拟,确定了一套可应用于淀山湖水质模拟的参数,并对模拟结果进行了验证;验证结果显示,ELCOM-CAEDYM耦合模型较好地模拟了常规水质和藻类浓度动态变化,模拟结果的总体变化趋势与实测结果相符合.同时运用该模型对淀山湖营...  相似文献   

13.
Climate change impact assessments conventionally assess just the implications of a change in mean climate due to global warming. This paper compares such effects of such changes with those due to natural multi-decadal variability, and also explores the effects of changing the year-to-year variability in climate as well as the mean. It estimates changes in mean monthly flows and a measure of low flow (the flow exceeded 95% of the time) in six catchments in Britain, using the UKCIP98 climate change scenarios and a calibrated hydrological model. Human-induced climate change has a different seasonal effect on flows than natural multi-decadal variability (an increase in winter and decrease in summer), and by the 2050s the climate change signal is apparent in winter and, in lowland Britain, in summer. Superimposing natural multi-decadal variability onto the human-induced climate change increases substantially the range in possible future streamflows (in some instances counteracting the climate change signal), with important implications for the development of adaptation strategies. Increased year-to-year variability in climate leads to slight increases in mean monthly flows (relative to changes due just to changes in mean climate), and slightly greater decreases in low flows. The greatest effect on low flows occurs in upland catchments.  相似文献   

14.
Quantifying the relative proportions of soil losses due to interrill and rill erosion processes during erosion events is an important factor in predicting total soil losses and sediment transport and deposition. Beryllium‐7 (7Be) can provide a convenient way to trace sediment movement over short timescales providing information that can potentially be applied to longer‐term, larger‐scale erosion processes. We used simulated rainstorms to generate soil erosion from two experimental plots (5 m × 4 m; 25° slope) containing a bare, hand‐cultivated loessal soil, and measured 7Be activities to identify the erosion processes contributing to eroded material movement and/or deposition in a flat area at the foot of the slope. Based on the mass balance of 7Be detected in the eroded soil source and in the sediments, the proportions of material from interrill and rill erosion processes were estimated in the total soil losses, the deposited sediments in the flat area, and in the suspended sediments discharged from the plots. The proportion of interrill eroded material in the discharged sediment decreased over time as that of rill eroded material increased. The amount of deposited material was greatly affected by overland flow rates. The estimated amounts of rill eroded material calculated using 7Be activities were in good agreement with those based on physical measurements of total plot rill volumes. Although time lags of 45 and 11 minutes existed between detection of sediment being removed by rill erosion, based on 7Be activities, and observed rill initiation times, our results suggest that the use of 7Be tracer has the potential to accurately quantify the processes of erosion from bare, loessal cultivated slopes and of deposition in flatter, downslope areas that occur in single rainfall events. Such measurements could be applied to estimate longer‐term erosion occurring over larger areas possessing similar landforms. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
During the last 150 years, land degradation across the semi‐arid grasslands of the south‐western United States has been associated with an increase in runoff and erosion. Concurrent with this increase in runoff and erosion is a loss of nitrogen (N) and phosphorus (P), which are plant‐essential nutrients. This study investigates the runoff‐driven redistribution and loss of dissolved and particulate‐bound N and P that occurs during natural runoff events over a trajectory of degradation, from grassland to degraded shrubland, in central New Mexico. Runoff‐driven nutrient dynamics were monitored at four stages over a transition from grassland to shrubland, for naturally occurring rainfall events over 10 × 30 m bounded runoff plots. Results show that particulate‐bound forms of N and P are responsible for most of N and P lost from the plots due to erosion occurring during runoff events. Results suggest that for high‐magnitude rainfall events, the output of N and P from the plots may greatly exceed the amount input into the plots, particularly over shrub‐dominated plots where erosion rates are higher. As these results only become apparent when monitoring these processes over larger hillslope plots, it is important to recognize that processes of nutrient cycling related to the islands of fertility hypothesis may have previously been overstated when observed only at smaller spatial scales. Thus, the progressive degradation of semi‐arid grassland ecosystems across the south‐western United States and other semi‐arid ecosystems worldwide has the potential to affect N and P cycling significantly through an increase in nutrient redistribution and loss in runoff. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
The time required at a field site to obtain a few measurements of saturated hydraulic conductivity (Ks) will allow for many measurements of soil air permeability (ka). This study investigates if ka measured in situ (ka, in situ) can be a substitute for measurement of Ks in relation to infiltration and surface runoff modelling. Measurements of ka, in situ were carried out in two small agricultural catchments. A spatial correlation of the log‐transformed values existed having a range of approximately 100 m. A predictive relationship between Ks and ka measured on 100‐cm3 soil samples in the laboratory was derived for one of the field slopes and showed good agreement with an earlier suggested predictive Kska relationship. In situ measurements of Ks and ka suggested that the predictive relationships also could be used at larger scale. The Kska relationships together with the ka, in situ data were applied in a distributed surface runoff (DSR) model, simulating a high‐intensity rainfall event. The DSR simulation results were highly dependent on whether the geometric average of ka, in situ or kriged values of ka, in situ was used as model input. When increasing the resolution of Ks in the DSR model, a limit of 30–40 m was found for both field slopes. Below this limit, the simulated runoff and hydrograph peaks were independent of resolution scale. If only a few randomly chosen values of Ks were used to represent the spatial variation within the field slope, very large deviations in repeated DSR simulation results were obtained, both with respect to peak height and hydrograph shape. In contrast, when using many predicted Ks values based on a Kska relationship and measured ka, in situ data, the DSR model generally captured the correct hydrograph shape although simulations were sensitive to the chosen Kska relationship. As massive measurement efforts normally will be required to obtain a satisfactory representation of the spatial variability in Ks, the use of ka, in situ to assess spatial variability in Ks appears a promising alternative. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Much attention has been given to the surface controls on the generation and transmission of runoff in semi‐arid areas. However, the surface controls form only one part of the system; hence, it is important to consider the effect that the characteristics of the storm event have on the generation of runoff and the transmission of flow across the slope. The impact of storm characteristics has been investigated using the Connectivity of Runoff Model (CRUM). This is a distributed, dynamic hydrology model that considers the hydrological processes relevant to semi‐arid environments at the temporal scale of a single storm event. The key storm characteristics that have been investigated are the storm duration, rainfall intensity, rainfall variability and temporal structure. This has been achieved through the use of a series of defined storm hydrographs and stochastic rainfall. Results show that the temporal fragmentation of high‐intensity rainfall is important for determining the travel distances of overland flow and, hence, the amount of runoff that leaves the slope as discharge. If the high‐intensity rainfall is fragmented, then the runoff infiltrates a short distance downslope. Longer periods of high‐intensity rainfall allow the runoff to travel further and, hence, become discharge. Therefore, storms with similar amounts of high‐intensity rainfall can produce very different amounts of discharge depending on the storm characteristics. The response of the hydrological system to changes in the rainfall characteristics can be explained using a four‐stage model of the runoff generation process. These stages are: (1) all water infiltrating, (2) the surface depression store filling or emptying without runoff occurring, (3) the generation and transmission of runoff and (4) the transmission of runoff without new runoff being generated. The storm event will move the system between the four stages and the nature of the rainfall required to move between the stages is determined by the surface characteristics. This research shows the importance of the variable‐intensity rainfall when modelling semi‐arid runoff generation. The amount of discharge may be greater or less than the amount that would have been produced if constant rainfall intensity is used in the model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Regolith surface characteristics and response were examined over a three‐year period in a badland area in a Mediterranean middle‐mountain zone near Vallcebre (Eastern Pyrenees). Preliminary work carried out in this area indicated clear seasonal patterns of regolith properties driven by frost heaving in winter and crusting and erosion in the rest of the year. Rainfall simulations were performed with a small portable nozzle simulator in order to study seasonal changes in runoff generation, erosion rates and raindrop effect on bulk density changes. The results showed large seasonal variations in runoff and erosion responses. In?ltration rates after runoff start were correlated with precipitation depth before runoff start; runoff generation was therefore related to regolith saturation only to a very limited extent. Erosion rates were more controlled by runoff rates than by the weakness of regolith against raindrop splash, and sediment grain size increased with concentration. The combined role of antecedent regolith moisture and bulk density explained most of the seasonal variability in in?ltration, bulk density changes during rainfall and erosion rates, but some seasonal differences in sediment detachability were not explained by these variables and may be attributed to changes in roughness. Overall, runoff and erosion responses were relatively stable during spring and autumn, whereas wide variations in in?ltration rates and sediment detachment occurred in winter and summer respectively. Experiments conducted in a single season would have produced poorly representative, if not erroneous, results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Long-term catchment experiments from South Africa have demonstrated that afforestation of grasslands and shrublands significantly reduces surface-water runoff. These results have guided the country's forestry policy and the implementation of a national Invasive Alien Plant (IAP) control programme for the past few decades. Unfortunately, woody IAP densities continue to increase, compounding existing threats to water security from population growth and climatic change. Decision makers need defensible estimates of the impacts of afforestation or invasions on runoff to weigh up alternative land use options, or guide investment of limited resources into ecosystem restoration through IAP clearing versus engineering-based water-augmentation schemes. Existing attempts to extrapolate the impacts observed in catchment afforestation experiments to broad-scale IAP impacts give no indication of uncertainty. Globally, the uncertainty inherent in the results from paired-catchment experiments is seldom propagated into subsequent analyses making use of these data. We present a fully reproducible Bayesian model that propagates uncertainty from input data to final estimates of changes in streamflow when extrapolating from catchment experiments to broader landscapes. We apply our model to South Africa's catchment experiment data, estimating streamflow losses to plantations and analogous plant invasions in the catchments of southwestern South Africa, including uncertainty. We estimate that regional streamflow is reduced by 304 million m3 or 4.14% annually as a result of IAPs, with an upper estimate of 408 million m3 (5.54%) and a lower estimate of 267 million m3 (3.63%). Our model quantifies uncertainty associated with all parameters and their contribution to overall uncertainty, helping guide future research needs. Acknowledging and quantifying inherent uncertainty enables more defensible decisions regarding water resource management.  相似文献   

20.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号