首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

Integrated two-dimensional electrical resistivity imaging (ERI) and hydrochemical surveys were used to investigate the groundwater alluvial aquifer in Kuala Langat, Malaysia. The study in the Langat basin considered the thickness of the aquifer, the depth of the bedrock, the regions influenced by seawater intrusion, and the monitoring of water levels. The resistivity imaging results show that the upper layer consists of clay, while the second layer is an aquifer whose thickness varies mostly in the range of 10–30 m, and in some cases extends to 40 m. The bedrock depth varies from 30 to 65 m. The chemical analyses were carried out on groundwater samples from nine boreholes collected between 2008 and 2012. The analyses indicate that the total dissolved solids (TDS) exceed 1000 mg L-1 near the coastal area and are often less than 500 mg L-1 further inland. The ERI and hydrochemical analyses reveal that groundwater in the study area, especially towards the coast, is a mixture of brackish and fresh waters.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

2.
Xun Zhou  Chao Song  Ting Li 《水文科学杂志》2013,58(13):2367-2375
ABSTRACT

The inland extending length of the freshwatersaltwater interface toe is useful in studies of seawater intrusion in coastal areas. The submarine fresh groundwater discharge in coastal zones is affected not only by hydraulic conductivity and hydraulic gradient of the aquifer, but also by the position of the interface. Two observation wells at different distances from the coast are required to calculate the fresh groundwater flow rate in coastal unconfined aquifers. By considering that the submarine groundwater discharge is equal to the groundwater flow rate, the length of the interface toe extending inland can be estimated when the groundwater flow is at a steady-flow state. Aquifers with horizontal and sloping confined beds and without/with unique surface vertical infiltration are considered. Examples used to illustrate the application of these methods indicate that the inland extending lengths of the interface toe in aquifers with vertical surface infiltration are much shorter than those in aquifers without vertical surface infiltration, and the length of the interface in aquifers with a horizontal confining lower bed are smaller than those in aquifers with a confining lower bed sloping towards the sea. The extent of the interface on the northwestern coast near the city of Beihai in southern Guangxi, China, on 18 January 2013 was estimated as 471478 m.
Editor M.C. Acreman Associate editor not assigned  相似文献   

3.
Abstract

A sand dune area, ~50 km2 in size, the only source of freshwater in the coastal zone of Prakasham district, Andhra Pradesh, India, is bounded by marine sediments in the northwest, and the Bay of Bengal in the southeast. Measurements of groundwater level, hydrochemistry and stable isotopes for three years facilitated the identification of the aquifer response to drought and intense cyclonic storms. There was no major change in hydrochemistry and isotope values between drought and highly saturated conditions, except in a few wells in the northwest. During drought, the groundwater remained fresh, although the levels dipped to 2–5 m b.m.s.l., signifying no saline water ingression (no measurable bromide). Based on the field observations, resistivity soundings, electrical conductivity and groundwater level change due to pumping, the existence of impermeable boundaries in the northwest and southeast are hypothesized. Thus, the existing hydrogeological settings appear to be inhibiting the movement of the freshwater–saline water interface into the freshwater zone.
Editor D. Koutsoyiannis  相似文献   

4.
Abstract

This study evaluates an over-exploited aquifer (Balasor, India) and also explores the possibilities of sustainable management using several statistical approaches. First, bootstrap analysis indicates that groundwater pumping has resulted in the reduction of mean cultivated area as the average irrigation capacity per bore well dropped from 3.74 ha to 1.5 ha within a period of 10 years of operation. However, modelling the groundwater levels using the seasonal autoregressive integrated moving average (SARIMA) procedure showed no evidence of large-scale groundwater withdrawals. The derived models can be used for water table forecasting and also for infilling the missing observations. The empirical relationship among pumping test results indicated that well depth and aquifer thickness significantly influence the discharge from the aquifer. This discharge may have encouraged the resource-rich farmers to exploit the lower aquifer. Based on a contour plot, the zone of groundwater exploitation was estimated to vary from 25 to 60 m below the surface. Therefore, a uniform aquifer exploitation policy needs to be implemented to curb the vertical competition in exploiting the aquifer and to develop sustainable management of the groundwater.

Citation Panda, D. K. & Kumar, A. (2011) Evaluation of an over-used coastal aquifer (Orissa, India) using statistical approaches. Hydrol. Sci. J. 56(3), 486–497.  相似文献   

5.
6.
Abstract

This paper describes a study of groundwater flow in a coastal Miliolite limestone aquifer in western India. An examination of field information suggested that the transmissivity of the aquifer varies significantly between high and low groundwater heads. Pumping tests indicate that this is due to the development of major fissures in the upper part of the aquifer. A regional groundwater model with varying transmissivities is used to represent the field behaviour. The model is also used to examine the effect of artificial recharge on the alleviation of saline intrusion problems in the coastal area.  相似文献   

7.
The concentrations of chlorofluorocarbons (CFC‐11, CFC‐12 and CFC‐113) and tritium (3H) content in groundwater were used to date groundwater age, delineate groundwater flow systems and estimate flow velocity in the Hohhot basin. The estimated young groundwater age is fallen in the bracket of 21 ~ 50 a and indicates the presence of two different age profiles and flow systems in the shallow groundwater system. Older age waters occur under the topographically low areas, where the aquifer is double‐layer aquifer system consisting of shallow unconfined‐semi‐confined aquifer and deep confined aquifer. This reflects long flow paths associated with regional flow. Groundwater (range from 21 to 34 years) in the north piedmont and east hilly areas, where the aquifer is a single‐layer aquifer consisting of alluvial fans, are typically younger than those in the low areas. The combination of CFCs dating with hydrogeological information indicates that both local and regional flow systems are present at the basin. The regional groundwater flow mainly flows from the north and east to the southwest, the local groundwater flow system occurs nearby the Hohhot city. The mean regional groundwater flow velocity of the shallow groundwater is estimated about 0.73 km/a. These findings can aid in refining hydrogeological conceptual model of the study area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Reply     
Abstract

This paper develops a new analytical solution for the aquifer system, which comprises an unconfined aquifer on the top, a semi-confined aquifer at the bottom and an aquitard between them. This new solution is derived from the Boussinesq equation for the unconfined aquifer and one-dimensional leaky confined flow equation for the lower aquifer using the perturbation method, considering the water table over-height at the remote boundary. The head fluctuation predicted from this solution is generally greater than the one solved from the linearized Boussinesq equation when the ratio of the tidal amplitude to the thickness of unconfined aquifer is large. It is found that both submarine groundwater discharges from upper and lower aquifers increase with tidal amplitude–aquifer thickness ratio and may be underestimated if the discharge is calculated based on the average head fluctuation. The effects of the aquifer parameters and linearization of the Boussinesq equation on the normalized head fluctuation are also investigated.

Editor D. Koutsoyiannis; Associate editor J. Simunek

Citation Chuang, M.-H., Mahdi, A.-A. and Yeh, H.-D., 2012. A perturbation solution for head fluctuations in a coastal leaky aquifer system considering water table over-height. Hydrological Sciences Journal, 57 (1), 162–172.  相似文献   

9.
The importance of the study of fresh‐saline water incursion cannot be over‐emphasized. Borehole techniques have been widely used, but they are quite expensive, intrusive, and time consuming. The electrical resistivity method has proved very successful in groundwater assessment. This advanced technique uses the calculation of Dar‐Zarrouk (D‐Z) parameters, namely longitudinal unit conductance, transverse unit resistance, and longitudinal resistivity has been employed by using 50 vertical electrical sounding points to assess the groundwater and delineate the fresh‐saline water interface over 1045 km2 area of Khanewal in Southern Punjab of Pakistan. The x‐y plots and maps of D‐Z parameters were produced to establish a decipherable vision for the occurrence and distribution of different water‐bearing formations of fresh‐saline water aquifers through a complicated situation of intermixing of different resistivity ranges for fresh‐saline water bodies. This technique is useful to reduce the ambiguity produced by the process of equivalence and suppression which cause intermixing in differentiating fresh, brackish, and saline aquifers during interpretation. The fresh‐saline water interface is correlated very well with the previous studies of water quality analysis carried out in Khanewal area. The results suggest that the D‐Z parameters are useful for demarcating different aquifer zones. The behavior and pattern of D‐Z parameters with respect to occurrence and distribution of different water‐bearing formations were effectively identified and delineated in the study area.  相似文献   

10.
Abstract

Chemical and isotopic data of groundwater of the Upper Cretaceous aquifer in the Orontes basin, Syria, have been used to assess the groundwater geochemistry, the origin of groundwater recharge and groundwater residence time. The chemical data indicate that dissolution of evaporite minerals is the main process controlling groundwater mineralization. The composition of stable isotopes δ18O and δ2H, together with 14C activity, reflect the existence of three different groups: (a) groundwater in the Coastal Mountains with δ18O of –6.65‰, quite similar to modern-day precipitation, and high 14C (>50 pmC); (b) groundwater in the unconfined aquifer of the Hama Uplift, which has δ18O of –5.52‰ and 14C near 20 pmC, and is recharged locally; and (c) groundwater from the confined aquifer of the Homs Depression, which is characterized by more depleted δ18O,, –8.01‰, and low 14C (<7 pmC), and might be recharged in the northern piedmont of the Anti-Lebanon Mountains. The distinctive isotope signatures of the latter two groups indicate different recharge elevations and palaeoclimatic effects. The low recharge rate of the groundwater in the Hama Uplift aquifer, and the even slower recharge rate in the Homs Depression aquifer, are reflected by groundwater 14C residence times of 5 and over 22 Ka BP, respectively.

Editor D. Koutsoyiannis

Citation Al-Charideh, A., 2013. Recharge and mineralization of groundwater of the Upper Cretaceous aquifer in Orontes basin (Syria). Hydrological Sciences Journal, 58 (2), 452–467.  相似文献   

11.
Abstract

Abstract Groundwater in the Gaza Strip is the only source of water for domestic, agricultural and industrial uses. Extensive pumping has caused serious quantitative and qualitative problems in the aquifer. The hydrochemical facies are evaluated using the trilinear diagram for 200 water samples. Groundwater in the north and west is mostly characterized by Ca-Mg-HCO3 facies (alkaline water), and in the south and east by Na-Cl-SO4 facies (saline water). Sand dunes and rainfall are the major factors controlling the distribution of hydrochemical facies. The eastern edge of the sand dune belt is considered the barrier that separates the two major facies. Brackish water flowing from the east is mixed with rainwater which infiltrates through the sand dunes to the aquifer. Other factors, e.g. seawater intrusion and extensive pumping, play a minor role in the distribution of the hydrochemical facies.  相似文献   

12.
In eastern England the Chalk aquifer is covered by extensive Pleistocene deposits which influence the hydraulic conditions and hydrochemical nature of the underlying aquifer. In this study, the results of geophysical borehole logging of groundwater temperature and electrical conductivity and depth sampling for major ion concentrations and stable isotope compositions (δ18O and δ2H) are interpreted to reveal the extent and nature of the effective Chalk aquifer of north Norfolk. It is found that the Chalk aquifer can be divided into an upper region of fresh groundwater, with a Cl concentration of typically less than 100 mg l−1, and a lower region of increasingly saline water. The transition between the two regions is approximately 50 m below sea-level, and results in an effective aquifer thickness of 50–60 m in the west of the area, but less than 25 m where the Eocene London Clay boundary is met in the east of the area. Hydrochemical variations in the effective aquifer are related to different hydraulic conditions developed in the Chalk. Where the Chalk is confined by low-permeability Chalky Boulder Clay, isotopically depleted groundwater (δ18O less than −7.5‰) is present, in contrast to those areas of unconfined Chalk where glacial deposits are thin or absent (δ18O about −7.0‰). The isotopically depleted groundwater is evidence for groundwater recharge during the late Pleistocene under conditions when mean surface air temperatures are estimated to have been 4.5°C cooler than at the present day, and suggests long groundwater residence times in the confined aquifer. Elevated molar Mg:Ca ratios of more than 0.2 resulting from progressive rock-water interaction in the confined aquifer also indicate long residence times. A conceptual hydrochemical model for the present situation proposes that isotopically depleted groundwater, occupying areas where confined groundwater dates from the late Pleistocene, is being slowly modified by both diffusion and downward infiltration of modem meteoric water and diffusive mixing from below with an old saline water body.  相似文献   

13.
Abstract

Major ions and stable isotopes in groundwaters of the Plio-Quaternary shallow aquifer of the Djerid oases, southern Tunisia, were investigated to elucidate the origin of groundwater recharge and the mineralization processes. It has been demonstrated that the groundwater composition is mainly controlled by the water–rock interaction, the encroachment of brines from the Chotts and the return flow of irrigation waters. The isotopically depleted groundwater samples suggest that the recharge waters derive from an old palaeoclimatic origin. However, the enriched groundwater samples reflect the presence of evaporated recharge water. Furthermore, the large negative deuterium-excess values indicate the effect of secondary evaporation processes, probably related to the return flow of irrigation waters pumped from the underlying aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Tarki, M., Dassi, L. and Jedoui, Y., 2012. Groundwater composition and recharge origin in the shallow aquifer of the Djerid oases, southern Tunisia: implications of return flow. Hydrological Sciences Journal, 57 (4), 790–804.  相似文献   

14.
Abstract

The Complex Terminal (CT) and Plio-Quaternary (P-Q) aquifers in the Chott Gharsa plain in southwestern Tunisia have been investigated with the aid of chemical and isotopic tools. It has been demonstrated that groundwater from the CT is mainly of palaeo-origin, especially in the western and central parts of the plain where the most negative values of δ18O and δ2H were observed (between??8.1 and??7.6‰ for δ18O, and??60 to??57‰ for δ2H), combined with low concentrations of radiocarbon (6.8–7.5 pmc) and absence of tritium. Modern recharge of the aquifer occurs only in the eastern part of the system where younger waters were observed, as indicated by their stable isotope composition, relatively high radiocarbon content and presence of tritium. Groundwater from the P-Q multi-layer aquifer represents mixtures of ascending deep CT waters and modern water recharging the P-Q aquifer system. Isotope mass balance was used to quantify mixing proportions. The calculations showed that the contribution of deep CT groundwater to the P-Q aquifer system reaches about 75% in the western and central parts of the plain where the CT aquifer remains strongly artesian. This contribution decreases to about 15% towards the eastern part of the plain, as a consequence of significant reduction of artesian pressure in this area of the CT aquifer. Chemical data suggest that mineralization of the studied groundwater systems is controlled mainly by dissolution of evaporative minerals (halite, anhydrite and gypsum) and cation exchange reactions with the matrix, possibly enhanced by recent anthropogenic disturbance of the system caused by lowering of the water table due to heavy exploitation and return flow of saline irrigation water into the P-Q aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Yangui, H., Abidi, I., Zouari, K., and Rozanski, K., 2012. Deciphering groundwater flow between the Complex Terminal and Plio-Quaternary aquifers in Chott Gharsa plain (southwestern Tunisia) using isotopic and chemical tools. Hydrological Sciences Journal, 57 (5), 967–984.  相似文献   

15.
Abstract

Fresh-water lenses are formed in unconfined saline aquifers in response to deep percolation from rainfall, artificial recharge, and seepage from irrigation waters and/or in response to injecting fresh water through vertical or horizontal wells. An approximate differential equation is derived in terms of the depth of the fresh-salt water interface below the initial position of the saline-water table. This equation is analogous to that of the ground-water motion in two dimensions. The wealth of knowledge available from solving the latter equation is used to obtain approximate expressions for the movement of the fresh-salt water interface in several flow systems wherein this interface does not reach the bottom of the aquifer. These approximate solutions as well as others for related quantities of interest may afford useful tools for rationally planning the extraction of usable waters from such flow systems.  相似文献   

16.
Abstract

The assessment of groundwater vulnerability to pollution has proved to be an effective tool for water resource management, especially in arid and semi-arid regions like Mahdia and Ksour Essaf. The main objective of this study is to assess the aquifer vulnerability by applying the DRASTIC method as well as using sensitivity analysis to evaluate the effect of each DRASTIC parameter on the final vulnerability map. An additional objective is to demonstrate the role of the GIS techniques in the vulnerability assessment. The DRASTIC method assigns a high vulnerability to the coast of the Mahdia-Ksour Essaf. The lowest values are observed in the southern part of the study area. A sensitivity analysis applied in this study suggests that net recharge, aquifer media and depth of groundwater are the key factors determining vulnerability. The model is validated with groundwater quality data and the results have shown strong relationships between modified DRASTIC Vulnerability Index and nitrate and chloride concentrations.

Citation Saidi, S., Bouri, S. & Ben Dhia, H. (2011) Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study. Hydrol. Sci. J. 56(2), 288–304.  相似文献   

17.
Abstract

On the basis of the degree of mineralization, the groundwater of Apan-Tochac sub-basin may be considered as fresh (TDS < 500 ppm). However, chlorination is necessary to make it fit for human consumption. Major ion analyses of over 235 water samples reveal a striking relationship between hydrochemical evolution and the groundwater flow system. A high content of total dissolved solids, and low values of the Ca:Mg ratio are present in wells located on the plain (discharge zone), whereas opposite conditions are associated with wells located in higher regions (recharge zone). Statistical data analysis using the method of principal components allowed to differentiation of two hydrochemical families: (a) low mineralization corresponding to the recharge zone, and (b) high mineralization corresponding to the discharge zone. Waters of the Ca + Mg + HCO3, and Na + Mg + HCO3 hydrochemical fades are present and the former is dominant. The water is slightly alkaline, having slight problems of salinity during the year owing mainly to Ca2+HCO3 ? and Na+Cl? salts. The hydrochemistry of the groundwater reflects the pattern of local groundwater flow for this sub-basin.  相似文献   

18.
ABSTRACT

Groundwater is used by 3?million inhabitants in the coastal urban city of Douala, Cameroon, but comprehensive data are too sparse for it to be managed in a sustainable manner. Hence this study aimed to (1) assess the potability of the groundwater; (2) evaluate the spatial variation of groundwater composition; and (3) assess the interaction and recharge mechanisms of different water bodies. Hydrogeochemical tools and methods revealed the following results in the Wouri and Nkappa formations of the Douala basin, which is beneath Douala city: 30% of water samples from hand-dug wells in the shallow Pleistocene alluvium aquifer were saline and highly mineralized. However, water from boreholes in the deeper (49–92 m depth) Palaeocene aquifer was saline-free, less mineralized and potable. Water in the shallow aquifer (0.5–22 m depth) was of Na+-K+-Cl?-NO3? type and not potable due to point source pollution, whereas Ca+-HCO3? unpolluted water dominates in the deeper aquifer. Water in the deep and shallow aquifers indicates the results of preferential flow pass and evaporative recharge, respectively. Possible hydrogeochemical processes include point source pollution, reverse ion exchange, remote recharge areas and mixing of waters with different chemical signatures.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR M.D. Fidelibus  相似文献   

19.
Abstract

The Agua Amarga coastal aquifer has been the object of a succession of anthropogenic interventions over the last 90 years: (a) the operation of saltworks from 1925 to 1975; (b) the withdrawal, since 2003, of groundwater from the aquifer along the coast line; and (c) the programme of pouring seawater over the salt marsh, carried out since 2009, to recover the piezometric levels and the soil moisture conditions. For a better understanding of how these past and present human activities have affected the natural groundwater regime, and to validate certain hypotheses concerning the interpretation of experimental data on temperature depth profiles and piezometric and salinity changes, a numerical fluid flow and solute transport model was designed and applied to the period 1925–2010, using SEAWAT. This model reproduces, in a qualitative and quantitative way, the flow and transport processes that operated during this time, as well as the behaviour of the seawater wedge.

Citation Alhama Manteca, I., 2013. Simulation and consequences of successive anthropogenic activity in the Agua Amarga coastal aquifer (southeast Spain). Hydrological Sciences Journal, 58 (5), 1072–1087.

Editor D. Koutsoyiannis  相似文献   

20.
SUMMARY

The Coastal Plain aquifer of Israel, of Plio-Pleistocene Age, stretches from Binyamina in the North to the Gaza Strip in the South-a distance of about 112 km and has an average width of about 15 Km. The allowed withdrawal is estimated at about 200 MCM/year.

As a result of an average yearly withdrawal of 426 MCM/year during the last 10 years the water levels dropped to a dangerously low position (-2)-(-4) m below sea level at distances of 3–5 Km from the coast, causing sea water intrusion which, in Tel Aviv and Emek Hefer, endangered water supply wells.

As a counter-measure, artificial groundwater recharge through wells was practiced in Emek Hefer since 1959. Recharge was practiced in 7 wells at a rate of 6 MCM/year, the water coming from adjacent Cretaceous limestone aquifers.

In Tel Aviv a fresh water barrier was established in 1964 by injecting Lake Kinereth water into 17 wells during winter at a rate of 6 MCM/winter. In the rest of the Coastal Plain water was injected to the aquifer through about 40–45 wells at a total yearly rate of about 10–12 MCM.

Recharge by spreading is practiced in Yavneh at a rate of about 10–13 MCM per winter, also recharge by spreading is practiced with flood water of Nahal Shikma at a rate of up to 8 MCM/winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号