首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Jianting Zhu 《水文科学杂志》2020,65(11):1872-1878
ABSTRACT

In this study, an approach is developed to investigate the impact of fractal characteristics of unsaturated soil between the water table and land surface on the steady-state evaporation and infiltration across a heterogeneous landscape. The soil domain is conceptualized as a collection of stream tubes of soils and the particle diameters in various stream tubes follow a fractal distribution. The saturated hydraulic conductivity of each stream tube is related to the representative particle diameter in the tube. The effective specific discharge is then integrated from the specific discharge for each stream tube and the fractal distribution. The effective evaporation and infiltration in unsaturated soils increase with the fractal dimension. The ratio of minimum over maximum diameters does not significantly affect the specific discharge in the fractal soil. The specific discharge in unsaturated fractal soils calculated by using the simple average particle diameter mostly over-predicts the actual effective specific discharge.  相似文献   

2.
Abstract

The accuracy of six combined methods formed by three commonly-used soil hydraulic functions and two methods to determine soil hydraulic parameters based on a soil hydraulic parameter look-up table and soil pedotransfer functions was examined for simulating soil moisture. A novel data analysis and modelling approach was used that eliminated the effects of evapotranspiration so that specific sources of error among the six combined methods could be identified and quantified. By comparing simulated and observed soil moisture at six sites of the USDA Soil Climate Analysis Network, we identified the optimal soil hydraulic functions and parameters for predicting soil moisture. Through sensitivity tests, we also showed that adjusting only the soil saturated hydraulic conductivity, Ks , is insufficient for representing important effects of macropores on soil hydraulic conductivity. Our analysis illustrates that, in general, soil hydraulic conductivity is less sensitive to Ks than to the soil pore-size distribution parameter.

Editor D. Koutsoyiannis; Associate editor D. Hughes

Citation Pan, F., McKane, R.B. and Stieglitz, M., 2012. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture. Hydrological Sciences Journal, 57 (4), 723–737.  相似文献   

3.
Abstract

Using the Monte Carlo (MC) method, this paper derives arithmetic and geometric means and associated variances of the net capillary drive parameter, G, that appears in the Parlange infiltration model, as a function of soil texture and antecedent soil moisture content. Approximate expressions for the arithmetic and geometric statistics of G are also obtained, which compare favourably with MC generated ones. This paper also applies the MC method to evaluate parameter sensitivity and predictive uncertainty of the distributed runoff and erosion model KINEROS2 in a small experimental watershed. The MC simulations of flow and sediment related variables show that those parameters which impart the greatest uncertainty to KINEROS2 model outputs are not necessarily the most sensitive ones. Soil hydraulic conductivity and wetting front net capillary drive, followed by initial effective relative saturation, dominated uncertainties of flow and sediment discharge model outputs at the watershed outlet. Model predictive uncertainty measured by the coefficient of variation decreased with rainfall intensity, thus implying improved model reliability for larger rainfall events. The antecedent relative saturation was the most sensitive parameter in all but the peak arrival times, followed by the overland plane roughness coefficient. Among the sediment related parameters, the median particle size and hydraulic erosion parameters dominated sediment model output uncertainty and sensitivity. Effect of rain splash erosion coefficient was negligible. Comparison of medians from MC simulations and simulations by direct substitution of average parameters with observed flow rates and sediment discharges indicates that KINEROS2 can be applied to ungauged watersheds and still produce runoff and sediment yield predictions within order of magnitude of accuracy.  相似文献   

4.
Abstract

By sprinkling an experimental plot with different intensities of simulated rainfall starting with different initial conditions of soil moisture, the variations of infiltration capacity and consequently the response of the soil surface to runoff are evaluated. The following values are successively determined from experimental data: the mean depth of surface storage; the mean depth of detention and the parameters of a chosen infiltration formula.  相似文献   

5.
Abstract

Shrub-induced spatial heterogeneity of soil and hydrological properties are common in arid and semi-arid ecosystems. To examine the influence of shrubs on spatial patterns of soil physical, chemical and hydrological properties, the typical sand-fixation species, Caragana korshinskii, was studied in the Shapotou area of the Tengger Desert, China. Miniature cylinder infiltrometers were used to quantify the spatial variations of infiltration rate in the soils, and were installed at 20-cm intervals around the shrubs. Meanwhile, soil samples were collected at 0–5 cm depth every 10 cm to analyse their physical and chemical properties and soil moisture content. The results indicate that the various measured parameters showed a gradational change from sub-canopy to open space. The establishment of shrubs formed obvious “fertile islands” where more soil nutrients collected. The total nitrogen (TN), soil organic matter (SOM), electrical conductivity (EC) and surface soil moisture content decreased gradually from around shrub stems to the interspace. The sand content around shrub stems was significantly higher (< 0.05), and decreased gradually from the centre towards the outside microsites. The silt and clay contents showed opposite variability characteristics. The variation of soil bulk density was less within 140 cm distance from the stem, and no abrupt change was found at the shrub’s drip line. No significant tendency was found for the soil pH values. The steady infiltration rates declined with increasing stem distance and then tended to be stable, and no abrupt change occurred at the position of the overhead canopy margin. The increase of infiltration rate was rapid nearer to the stem; the variability trend can be fitted by a log-log (power function) model. This study indicated the gradational change in soil and hydrological properties, which was not consistent with the binary division of shrubs into “canopy” and “interspace” zones.
Editor Z.W. Kundzewicz  相似文献   

6.
ABSTRACT

Soil infiltration processes were evaluated under field conditions by double-ring infiltrometers with different underlying surfaces in permafrost regions of the Tibetan Plateau. The results show that initial infiltration rates, stable soil infiltration rates and cumulative soil infiltration are strongly dependent on the underlying surface types, with the highest initial and stable soil infiltration rates in the alpine desert steppe, and the lowest in alpine meadow. The effects of soil moisture and texture on infiltration processes were also assessed. Within the same underlying surfaces, the values of infiltration parameters increased with the amount of vegetation cover, while soil moisture and soil infiltration rates displayed opposing trends, with fitting slopes of ?0.03 and ?0.01 for the initial and stable soil infiltration rates, respectively. The accuracies of the five models in simulating soil infiltration rates and seven models in predicting cumulative infiltration rates were evaluated against data generated from field experiments at four sites. Based on a comparative analysis, the Horton model provided the most complete understanding of the underlying surface effects on soil infiltration processes. Altogether, these findings show that different underlying surfaces can alter soil infiltration processes. This study provides a useful reference for understanding the parameterization of land surface processes for simulating changes in hydrological processes under global warming conditions in the permafrost region on the Tibetan Plateau.  相似文献   

7.
ABSTRACT

Soil structure-dependent parameters can vary rapidly as a consequence of perturbing events such as intense rainfall. Investigating their short-term changes is therefore essential to understand the general behaviour of a porous medium. The aim of this study is to gain insight into the effects of wetting, perturbation and recovery processes through different sequences of Beerkan infiltration experiments performed on a sandy-loam soil. Two different three-run infiltration experiments (LHL and LLL) were carried out by pouring water at low (L, non-perturbing) and high (H, perturbing) heights above the soil surface and at short time intervals (hours, days). The results demonstrate that the proposed method allows one to capture short-term variations in soil structure-dependent parameters. The developed methodology is expected to simplify the parameterization of hydrological models with temporally variable soil hydraulic properties.  相似文献   

8.
In contrast to event based hydrologic models which reveal how a basin responds to an individual rainfall event, continuous ones synthesize hydrologic processes over a longer time period that includes both dry and wet conditions. With respect to the importance of infiltration method in Rainfall-Runoff (RR) modeling, the objective of this study was to assess HEC-HMS with Soil Moisture Accounting (SMA) infiltration algorithm, considering several components of hydrologic cycle such as canopy interception, surface depression, infiltration into the soil profile storage, percolation to the ground water aquifer and base flow caused by available soil storage vs. maximum saturated capacity of soil layer, to model daily flows of Karoon III basin (Iran). The model showed satisfied performance by accounting initial moisture condition by SMA model with Nash-Sutcliffe (NS) coefficient of 0.76 and 0.64 for calibration and verification. Sensitivity analysis showed that saturated hydraulic conductivity (K), Clark storage coefficient (R) and time of concentration (t c) were the most effective parameters on the simulated Peak Over Thresholds (POT). Results from this study assist in improving model accuracy and ability to predict future conditions based upon basin characteristic change.  相似文献   

9.
Understanding photosynthesis and plant water management as a coupled process remains an open scientific problem. Current eco-hydrologic models characteristically describe plant photosynthetic and hydraulic processes through ad hoc empirical parameterizations with no explicit accounting for the main pathways over which carbon and water uptake interact. Here, a soil–plant-atmosphere continuum model is proposed that mechanistically couples photosynthesis and transpiration rates, including the main leaf physiological controls exerted by stomata. The proposed approach links the soil-to-leaf hydraulic transport to stomatal regulation, and closes the coupled photosynthesis–transpiration problem by maximizing leaf carbon gain subject to a water loss constraint. The approach is evaluated against field data from a grass site and is shown to reproduce the main features of soil moisture dynamics and hydraulic redistribution. In particular, it is shown that the differential soil drying produced by diurnal root water uptake drives a significant upward redistribution of moisture both through a conventional Darcian flow and through the root system, consistent with observations. In a numerical soil drying experiment, it is demonstrated that more than 50% of diurnal transpiration is supplied by nocturnal upward water redistribution, and some 12% is provided directly through root hydraulic redistribution. For a prescribed leaf area density, the model is then used to diagnose how elevated atmospheric CO2 concentration and increased air temperature jointly impact soil moisture, transpiration, photosynthesis, and whole-plant water use efficiency, along with compensatory mechanisms such as hydraulic lift using several canonical forms of root-density distribution.  相似文献   

10.
Abstract

A series of experiments were conducted on vertical columns of soil in which periodic applications of water were applied to the surface, separated by redistribution processes. The variations of hydraulic head and water content along the column were measured.

Special attention was given in correlating the tensiometer behaviour with the application and disappearance of the head of water at the surface of the column.  相似文献   

11.
ABSTRACT

The temporal and spatial characteristics of soil moisture over the Tibetan Plateau (TP) were analysed to explore the relative contributions of temperature and precipitation to soil moisture change. Non-significant changes in soil moisture were observed for the TP over the period 1950–2010, while a seasonal cycle was evident, with higher values in summer and smaller values in winter. The soil moisture showed obvious spatial heterogeneity, with higher values in the south than in the north of the TP. The soil moisture fluctuated with time, jointly influenced by precipitation and temperature changes, with precipitation the dominant factor, while temperature regulated the relationship between soil moisture and precipitation. The relative contribution of precipitation to soil moisture changes was over 80%, except for winter in which temperature was the dominant factor, with a relative contribution of more than 70%. Because of the sharp increase in temperature in winter, the uneven spatial distribution of soil moisture over the TP might harm the fragile ecological environment.  相似文献   

12.
Abstract

Advances in the traditional method of subsurface porous clay pipe irrigation rely on knowledge of the distribution of water in the soil. Knowing the relationships among the hydraulic and physical parameters in the system is important for both the design and management of the system. To simulate the infiltration from the porous clay pipe and predict the wetted zone geometry in the soil, a computer model is developed herein. Laboratory experiments were conducted on soil samples representing two different soil textures in a specially designed bin to understand the flow phenomenon and to validate the developed model. In a given soil texture, the installation depth of the pipe and the volume of water applied in the soil are the major factors affecting the wetted zone. The relationships among various parameters, namely lateral spacing, installation depth, irrigation run time, hydraulic conductivity of the body of the pipe, and hydraulic head in the system, were established using the developed model.  相似文献   

13.
ABSTRACT

Climate change alters hydrological processes and results in more extreme hydrological events, e.g. flooding and drought, which threaten human livelihoods. In this study, the large-scale distributed variable infiltration capacity (VIC) model was used to simulate future hydrological processes in the Yarlung Zangbo River basin (YZRB), China, with a combination of the CMIP5 (Coupled Model Intercomparison Project, fifth phase) and MIROC5 (Model for Interdisciplinary Research on Climate, fifth version) datasets. The results indicate that the performance of the VIC model is suitable for the case study, and the variation in runoff is remarkably consistent with that of precipitation, which exhibits a decreasing trend for the period 2046–2060 and an increasing trend for 2086–2100. The seasonality of runoff is evident, and substantial increases are projected for spring runoff, which might result from the increase in precipitation as well as the increase in the warming-induced melting of snow, glaciers and frozen soil. Moreover, evapotranspiration exhibits an increase between 2006–2020 and 2046–2060 over the entire basin, and soil moisture decreases in upstream areas and increases in midstream and downstream areas. For 2086–2100, both evapotranspiration and soil moisture increase slightly in the upstream and midstream areas and decrease slightly in the downstream area. The findings of this study could provide references for runoff forecasting and ecological protection for similar studies in the future.  相似文献   

14.
ABSTRACT

This study presents an adaptation of the double-ring infiltrometer (DRI) device, which allows several infiltration experiments to be conducted at the same location. Hence, it becomes possible to use the DRI method to investigate infiltration behaviour under different initial soil moisture conditions. The main feature is the splitting of the inner ring into two parts. While the lower part remains in the soil throughout the investigation period, the upper part is attached to the lower one just before the infiltration experiment. This method was applied to eight test sites in an Alpine catchment, covering different land-use/cover types. The results demonstrated the applicability of the adapted system and showed correlations between total water infiltration and initial soil moisture conditions on pastures, independent of the underlying soil type. In contrast, no correlation was found at forest sites or wetlands. Thus, the study emphasizes the importance of paying special attention to the impact of initial soil moisture conditions on the infiltration—and consequently the runoff behaviour—at managed areas. Given the differences in the total infiltrated water of between 30 and 1306 mm, consideration of the interplay between initial soil moisture conditions, land-use/cover type, and soil properties in rainfall–runoff models is a prerequisite to predict runoff production accurately.
EDITOR Z.W. Kundzewicz; ASSOCIATE EDITOR not assigned  相似文献   

15.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

High-frequency monitoring was conducted to quantify the frequency and controlling factors of preferential flow (PF) in a monsoon-influenced sub-humid mountainous catchment (6.48 km2) of Northern China. Rainfall was measured using nine bucket raingauges. Soil moisture probes were set up at 12 sites to observe the PF. Overall, 129 rainfall events were identified during the years 2014–2016. The average PF occurrence was 41%, which increased to 71% during heavy rainfall events (>20 mm) revealing a strong influence of the amount and intensity of rainfall. The study also revealed that the PF increased with antecedent soil moisture. Soil moisture was much higher on flat sites compared to sloping sites, providing evidence that the topography has a strong influence on rainfall infiltration and runoff which, subsequently, influence soil moisture variation and the occurrence of PF. Our findings provide valuable insights into the hydrological processes for studies in regions with similar environmental conditions.  相似文献   

17.
Abstract

Rainfall–runoff induced soil erosion causes important environmental degradation by reducing soil fertility and impacting on water availability as a consequence of sediment deposition in surface reservoirs used for water supply, particularly in semi-arid areas. However, erosion models developed on experimental plots cannot be directly applied to estimate sediment yield at the catchment scale, since sediment redistribution is also controlled by the transport conditions along the landscape. In particular, representation of landscape connectivity relating to sediment transfer from upslope areas to the river network is required. In this study, the WASA-SED model is used to assess the spatial and temporal patterns of water and sediment connectivity for a semi-arid meso-scale catchment (933 km2) in Brazil. It is shown how spatial and temporal patterns of sediment connectivity within the catchment change as a function of landscape and event characteristics. This explains the nonlinear catchment response in terms of sediment yield at the outlet.

Citation Medeiros, P. H. A., Güntner, A., Francke, T., Mamede, G. L. & de Araújo, J. C. (2010) Modelling spatio-temporal patterns of sediment yield and connectivity in a semi-arid catchment with the WASA-SED model. Hydrol. Sci. J. 55(4), 636–648.  相似文献   

18.
In this paper, the feasibility of using magnetic resonance imaging (MRI) to study water infiltration into a heterogeneous soil is examined, together with its difficulties and limitations. MRI studies of ponded water infiltration into an undisturbed soil core show that the combination of one- and two-dimensional imaging techniques provides a visual and non-destructive means of monitoring the temporal changes of soil water content and the moisture profile, and the movement of the wetting front. Two-dimensional images show air entrapment in repetitive ponded infiltration experiments. During the early stages of infiltration, one-dimensional images of soil moisture profiles clearly indicate preferential flow phenomena. The observed advance of wetting fronts can be described by a linear relationship between the square root of infiltration time (√t) and the distance of the wetting front from the soil surface. Similarly, the cumulative infiltration is also directly proportional to √t. Furthermore, from the MRI infiltration moisture profiles, it is possible to estimate the parameters that feature in infiltration equations. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
20.
Abstract

This study investigates the terrestrial hydrological processes during a dry climate period in Southwest China by analysing the frequency-dependent runoff and soil moisture responses to precipitation variability. Two headwater sub-basins, the Nanpan and Guihe basins of the West River (Xijiang), are studied to compare and contrast the terrestrial responses. The variable infiltration capacity (VIC) model is used to simulate the hydrological processes. Using wavelets, the relationships between observed precipitation and simulated runoff/soil moisture are expressed quantitatively. The results indicate that: (a) the Guihe basin shows a greater degree of high-frequency runoff variability in response to regional precipitation; and (b) the Nanpan basin exhibits less capability in accommodating/smoothing extreme precipitation deficits, reflected in terms of both higher scale-averaged (for 3–6 months) and time-averaged (for the year 1963) wavelet power of soil moisture.

Editor Z.W. Kundzewicz; Associate editor C.-Y. Xu

Citation Niu, J. and Chen, J., 2013. Terrestrial hydrological responses to precipitation variability in Southwest China with emphasis on drought. Hydrological Sciences Journal, 59 (2), 325–335.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号