首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This simulation study explores opportunities to reduce catchment deep drainage through better matching land use with soil and topography, including the ‘harvesting’ (evapotranspiration) of excess water running on to lower land units. A farming system simulator was coupled with a catchment hydrological framework to enable analysis of climate variability and 11 different land‐use options as they impact the catchment water balance. These land‐use options were arranged in different configurations down a sequence of three hydrologically interconnected slope units (uphill, mid‐slope and valley floor land units) in a subcatchment of Simmons Creek, southern New South Wales, Australia. With annual crops, the valley floor land units were predicted to receive 187 mm year?1 of run‐on water in addition to annual rainfall in 1 in 10 years, and in excess of 94 mm year?1 in 1 in 4 years. In this valley floor position, predicted drainage averaged approximately 110 mm year?1 under annual crops and pastures, whereas permanent tree cover or perennial lucerne was predicted to reduce drainage by up to 99%. The planting of trees or lucerne on the valley floor units could ‘harvest’ run‐on water, reducing drainage for the whole subcatchment with proportionately small reduction in land areas cropped. Upslope land units, even though often having shallower soil, will not necessarily be the most effective locations to plant perennial vegetation for the purposes of recharge reduction. Water harvesting opportunities are site specific, dependent on the amounts and frequency of flows of water to lower landscape units, the amounts and frequency of deep drainage on the different land units, the relative areas of the different land units, and interactions with land use in the different slope positions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers. The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.  相似文献   

3.
ABSTRACT

The need for a detailed investigation of the Vea catchment water balance components cannot be overemphasized due to its accelerated land-cover dynamics and the associated impacts on the hydrological processes. This study assessed the possible consequences of land-use change scenarios (i.e. business as usual, BAU, and afforestation for the year 2025) compared to the 2016 baseline on the Vea catchment’s water balance components using the Soil and Water Assessment Tool (SWAT) model. The data used include daily climate and discharge, soil and land use/land cover maps. The results indicate that the mean annual water yield may increase by 9.1% under the BAU scenario but decrease by 2.7% under the afforestation scenario; actual evapotranspiration would decrease under BAU but increase under afforestation; and groundwater recharge may increase under both scenarios but would be more pronounced under the afforestation scenario. These outcomes highlight the significance of land-cover dynamics in water resource management and planning at the catchment.  相似文献   

4.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

5.
6.
Changes in the water balance of the Samin catchment (277.9 km2) on Java, Indonesia, can be attributed to land use change using the Soil Water Assessment Tool model. A baseline‐altered method was used in which the simulation period 1990–2013 was divided into 4 equal periods to represent baseline conditions (1990–1995) and altered land use conditions (1996–2001, 2002–2007, and 2008–2013). Land use maps for 1994, 2000, 2006, and 2013 were acquired from satellite images. A Soil Water Assessment Tool model was calibrated for the baseline period and applied to the altered periods with and without land use change. Incorporating land use change resulted in a Nash–Sutcliffe efficiency of 0.7 compared to 0.6 when land use change is ignored. In addition, the model performance for simulations without land use change gradually decreased with time. Land use change appeared to be the important driver for changes in the water balance. The main land use changes during 1994–2013 are a decrease in forest area from 48.7% to 16.9%, an increase in agriculture area from 39.2% to 45.4%, and an increase in settlement area from 9.8% to 34.3%. For the catchment, this resulted in an increase of the runoff coefficient from 35.7% to 44.6% and a decrease in the ratio of evapotranspiration to rainfall from 60% to 54.8%. More pronounced changes can be observed for the ratio of surface runoff to stream flow (increase from 26.6% to 37.5%) and the ratio of base flow to stream flow (decrease from 40% to 31.1%), whereas changes in the ratio of lateral flow to stream flow were minor (decrease from 33.4% to 31.4%). At sub‐catchment level, the effect of land use changes on the water balance varied in different sub‐catchments depending on the scale of changes in forest and settlement area.  相似文献   

7.
ABSTRACT

The aim of this paper is to estimate the effect that climate change will have on groundwater recharge at the Yucatan Peninsula, Mexico. The groundwater recharge is calculated from a monthly water balance model considering eight methods of potential and actual evapotranspiration. Historical data from 1961–2000 and climate model outputs from five downscaled general circulation models in the near horizon (2015–2039), with representative concentration pathway (RCP) 4.5 and 8.5 are used. The results estimate a recharge of 118 ± 33 mm·year–1 (around 10% of precipitation) in the historical period. Considering the uncertainty from GCMs under different RCP and evapotranspiration scenarios, our monthly water balance model estimates a groundwater recharge of 92 ± 40 mm·year–1 (RCP4.5) and 94 ± 38 mm·year–1 (RCP8.5) which represent a reduction of 23% and 20%, respectively, a result that threatens the socio-ecological balance of the region.  相似文献   

8.
A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall–runoff relationship of the 202 km2 Teba river catchment, located in semi‐arid south‐eastern Spain. The period of available data (1976–1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years. The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes. The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum. Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Abstract An annual water balance model of Lake Victoria is derived for the period 1925–2000. Regression techniques are used to derive annual inputs to the water balance, based on lake rainfall data, measured and derived inflows and estimated evaporation during the historical period. This approach acknowledges that runoff is a nonlinear function of lake rainfall. A longer inflow series is produced here which is representative of the whole inflow to the lake, rather than just from individual tributaries. The results show a good simulation of annual lake levels and outflows and capture the high lake level in 1997–1998. Climate change scenarios, from a recent global climate model experiment, are applied to the lake rainfall inflow series and evaporation data to estimate future water balances of the lake. The scenarios produce a potential fall in lake levels by the 2030s horizon, and a rise by the 2080s horizon. A discussion of the application of climate change data to this complex hydrological system is presented.  相似文献   

10.
In the present study, the stable isotopes δ18O and δ2H were used for assessment of the water balance in a heterogeneously structured catchment area in the Lusatian Lignite Mining District, in particular, for estimation of the annual groundwater inflow and outflow (IGW and OGW) of Mining Lake Plessa 117. The application of stable isotopes was possible since the water exchange in the catchment area had reached steady‐state conditions after the abandonment of mining activities in 1968 and the filling of the voids and aquifers by re‐rising groundwater in the years thereafter. Diverging slopes of the Evaporation Line and the Global Meteoric Water Line manifested as evaporation from the lake catchment area. The calculated isotope water balance was compared with the commonly used surface water balance, which is unable to differentiate between IGW and OGW, and with a local groundwater model. The groundwater model calculated an IGW of about 811 000 m3 yr?1 and an OGW close to zero, whereas the isotope water balance showed fluxes of about 914 000 and 140 000 m3 yr?1, respectively. Considering the contribution of the groundwater inflow to the total annual input into the lake (ΔIT) and the mean residence time (τ), where the groundwater model and the isotope water balance calculated 42 and 47% for ΔIT and 4·3 and 3·9 years for τ, respectively, it was shown that both water balance calculation methods led to comparable results despite the differences in IGW and OGW. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Bruno Ambroise 《水文研究》2016,30(20):3560-3577
In the small Ringelbach research catchment, where studies on the water cycle components in a granitic mountainous environment have been conducted since 1976, the water‐saturated areas that are hydraulically connected to the outlet play a major role in the streamflow generation, as it is here that complex interactions between atmosphere, surface and ground waters take place. During baseflow recession periods, which may last several months between two groundwater recharge events, the atmospheric inputs of water and energy on these contributing areas only explain the streamflow fluctuations observed around the master recession curve, which defines the groundwater contribution: fluctuating above it in the case of precipitation input on these areas, below it in the case of evaporation output from these areas. Streamflow may therefore largely deviate from the master recession curve in the case of long, hot, dry spells. Detailed mapping has shown that their variable extent is well related to baseflow by a loglinear curve. On the other hand, a synthetic master recession curve, well fitted by a second‐order hyperbolic function, has been obtained from numerous pure recession periods. Both based on these two curves, a simple procedure and a simple model have been used to (i) validate the hypothesis that the connected saturated areas are the only permanent variable contributing areas and (ii) simulate the daily streamflow volumes over long baseflow recession periods by a water balance of the aquifer below these areas only. The storm runoff ratio for small to moderate rainfall events is indeed corresponding to the catchment saturated fraction at that time. The volume of daily streamflow oscillations is indeed corresponding to the evaporation at the potential rate from the saturated areas only. In both cases, streamflow naturally tends towards the master recession curve after the end of any atmospheric perturbation. Introducing these findings into TOPMODEL led to significantly improved simulation results during baseflow recession periods. The master recession curve may therefore be considered as a dynamic equilibrium curve. Together with the relationship between saturated extent and baseflow, it provides the main characteristics necessary to understand and model the interactions at this complex interface and the resulting daily streamflow variations during baseflow recession periods in this type of catchment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Quantifying the relative contributions of different factors to runoff change is helpful for basin management, especially in the context of climate change and anthropogenic activities. The effect of snow change on runoff is seldom evaluated. We attribute the runoff change in the Heihe Upstream Basin (HUB), an alpine basin in China, using two approaches: a snowmelt-based water balance model and the Budyko framework. Results from these approaches show good consistency. Precipitation accounts for 58% of the increasing runoff. The contribution of land-cover change seems unremarkable for the HUB as a whole, where land-cover change has a major effect on runoff in each sub-basin, but its positive effect on increasing runoff in sub-basins 1 and 3 is offset by the negative effect in sub-basin 2. Snow change plays an essential role in each sub-basin, with a contribution rate of around 30%. The impact of potential evapotranspiration is almost negligible.

EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR S. Huang  相似文献   

13.
Recharge patterns, possible flow paths and the relative age of groundwater in the Akaki catchment in central Ethiopia have been investigated using stable environmental isotopes δ18O and δ2H and radioactive tritium (3H) coupled with conservative chloride measurements. Stable isotopic signatures are encoded in the groundwater solely from summer rainfall. Thus, groundwater recharge occurs predominantly in the summer months from late June to early September during the major Ethiopian rainy season. Winter recharge is lost through high evaporation–evapotranspiration within the unsaturated zone after relatively long dry periods of high accumulated soil moisture deficits. Chloride mass balance coupled with the isotope results demonstrates the presence of both preferential and piston flow groundwater recharge mechanisms. The stable and radioactive isotope measurements further revealed that groundwater in the Akaki catchment is found to be compartmentalized into zones. Groundwater mixing following the flow paths and topography is complicated by the lithologic complexity. An uncommon, highly depleted stable isotope and zero‐3H groundwater, observed in a nearly east–west stretch through the central sector of the catchment, is coincident with the Filwoha Fault zone. Here, deep circulating meteoric water has lost its isotopic content through exchange reactions with CO2 originating at deeper sources or it has been recharged with precipitation from a different rainfall regime with a depleted isotopic content. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we analyse how the performance and calibration of a distributed event‐based soil erosion model at the hillslope scale is affected by different simplifications on the parameterizations used to compute the production of suspended sediment by rainfall and runoff. Six modelling scenarios of different complexity are used to evaluate the temporal variability of the sedimentograph at the outlet of a 60 m long cultivated hillslope. The six scenarios are calibrated within the generalized likelihood uncertainty estimation framework in order to account for parameter uncertainty, and their performance is evaluated against experimental data registered during five storm events. The Nash–Sutcliffe efficiency, percent bias and coverage performance ratios show that the sedimentary response of the hillslope in terms of mass flux of eroded soil can be efficiently captured by a model structure including only two soil erodibility parameters, which control the rainfall and runoff production of suspended sediment. Increasing the number of parameters makes the calibration process more complex without increasing in a noticeable manner the predictive capability of the model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The clearest signs of hydrologic change can be observed from the trends in streamflow and groundwater levels in a catchment. During 1980–2007, significant declines in streamflow (−3.03 mm/year) and groundwater levels (−0.22 m/year) were observed in Himayat Sagar (HS) catchment, India. We examined the degree to which hydrologic changes observed in the HS catchment can be attributed to various internal and external drivers of change (climatic and anthropogenic changes). This study used an investigative approach to attribute hydrologic changes. First, it involves to develop a model and test its ability to predict hydrologic trends in a catchment that has undergone significant changes. Second, it examines the relative importance of different causes of change on the hydrologic response. The analysis was carried out using Modified Soil and Water Assessment Tool (SWAT), a semi-distributed rainfall-runoff model coupled with a lumped groundwater model for each sub- catchment. The model results indicated that the decline in potential evapotranspiration (PET) appears to be partially offset by a significant response to changes in rainfall. Measures that enhance recharge, such as watershed hydrological structures, have had limited success in terms of reducing impacts on the catchment-scale water balance. Groundwater storage has declined at a rate of 5 mm/y due to impact of land use changes and this was replaced by a net addition of 2 mm/y by hydrological structures. The impact of land use change on streamflow is an order of magnitude larger than the impact of hydrological structures and about is 2.5 times higher in terms of groundwater impact. Model results indicate that both exogenous and endogenous changes can have large impacts on catchment hydrology and should be considered together. The proposed comprehensive framework and approach demonstrated here is valuable in attributing trends in streamflow and groundwater levels to catchment climatic and anthropogenic changes.  相似文献   

17.
Historical changes in the level of Lake Bosumtwi, Ghana, have been simulated using a catchment‐scale hydrological model in order to assess the importance of changes in climate and land use on lake water balance on a monthly basis for the period 1939–2004. Several commonly used models for computing evaporation in data‐sparse regions are compared, including the Penman, the energy budget, and the Priestley–Taylor methods. Based on a comparison with recorded lake level variations, the model with the energy‐budget evaporation model subcomponent is most effective at reproducing observed lake level variations using regional climate records. A sensitivity analysis using this model indicates that Lake Bosumtwi is highly sensitive to changes in precipitation, cloudiness and temperature. However, the model is also sensitive to changes in runoff related to vegetation, and this factor needs to be considered in simulating lake level variations. Both interannual and longer‐term changes in lake level over the last 65 years appear to have been caused primarily by changes in precipitation, though the model also suggests that the drop in lake level over the last few decades has been moderated by changes in cloudiness and temperature over that time. Based on its effectiveness at simulating the magnitude and rate of lake level response to changing climate over the historical record, this model offers a potential future opportunity to examine the palaeoclimatic factors causing past lake level fluctuations preserved in the geological record at Lake Bosumtwi. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Integrated dynamic water and chloride balance models with a catchment‐scale hydrological model (PRMS) are used to investigate the response of a terminal tropical lake, Lake Abiyata, to climate variability and water use practices in its catchment. The hydrological model is used to investigate the response of the catchment to different climate and land‐use change scenarios that are incorporated into the lake model. Lake depth–area–volume relationships were established from lake bathymetries. Missing data in the time series were filled using statistical regression techniques. Based on mean monthly data, the lake water balance model produced a good agreement between the simulated and observed levels of Lake Abiyata for the period 1968–83. From 1984 onwards the simulated lake level is overestimated with respect to the observed one, while the chloride concentration is largely underestimated. This discrepancy is attributed to human use of water from the influent rivers or directly from the lake. The simulated lake level and chloride concentration are in better agreement with observed values (r2 = 0·96) when human water use for irrigation and salt exploitation are included in the model. A comparison of the simulation with and without human consumption indicates that climate variability controls the interannual fluctuations and that the human water use affects the equilibrium of the system by strongly reducing the lake level. Sensitivity analysis based on a mean climatic year showed that, after prolonged mean climatic conditions, Lake Abiyata reacts more rapidly to an abrupt shift to wetter conditions than to dry conditions. This study shows the significant sensitivity of the level and salinity of the terminal Lake Abiyata to small changes in climate or land use, making it a very good ‘recorder’ of environmental changes that may occur in the catchment at different time scales. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Interception loss has an important influence on the water yield of forested areas. Nevertheless, in most studies stemflow is not measured, therefore the question of how to determine the feasibility of optimizing interception and stemflow parameters simultaneously by matching daily simulated throughfall to fortnightly measurements of cumulative throughfall is an important one. By applying a daily empirical interception model, a goodness fit of 2·2 mm/day is obtained between observed and simulated cumulative throughfall. However, by applying the simple but robust Linking Test, it was shown that the parameters are non‐unique and falsely linked, i.e. inter‐relationships between different vegetation parameter sets give similar throughfall but non‐unique net precipitation. The Linking Test investigates the causes of obtaining falsely linked parameters and shows that objective equifinality is not the source of the problem. Objective equifinality occurs when an inappropriate objective function is used. The Linking Test also shows that falsely linked parameters are not caused by measuring throughfall on a non‐daily basis (termed frequency sampling equifinality). By expanding the interception model to the second degree, it was found that the non‐uniqueness is due to the inherent nature of interception and stemflow functions that behave similarly and therefore can easily compensate each other (termed similarity equifinality). It is also shown that a simple daily empirical exponential interception model developed for conifers in the uplands of the United Kingdom is suitable to model interception in Pinus radiata plantations in the Mediterranean climate of southern Australia by using only daily gross precipitation data and two parameters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Geomorphologists have to make choices and compromises, as acquisition techniques of geometrical information are numerous, depending on the specific complexity of the targeted three‐dimensional objects and the requirements of the end user. This article presents the methodology and the results over a well known and documented site. This ready‐to‐use, low‐altitude, aerial photo methodology reveals itself to be a satisfying compromise between cost, accuracy and difficulty of implementation. The selected equipment package is light enough to enable a quick reaction to unexpected events and the tools and methods are competitive with field acquisition techniques. An evaluation has demonstrated a sub‐metric accuracy for the final result. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号