首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Abstract

Intermittent rivers have a specific hydrological behaviour which also influences water quality dynamics. The objective of this work was to model the flow and water quality dynamics of a coastal Mediterranean intermittent river using the Soil and Water Assessment Tool (SWAT 2005). Flow, sediment, nitrogen and phosphorus transport were simulated on the Vène experimental catchment, France. The model was sequentially calibrated at sub-catchment scale and validated both at sub-catchment and catchment scales. A procedure for building the data records for the point sources is presented. The results indicate that, while the model produces good results for flow simulation, its performance for sediment transport is less satisfactory. This in turn impacts on the nutrient transport module. The reasons behind these shortcomings are analysed, taking into account the length of the data records, their distribution and the equations used in the SWAT model. The need for a thorough multi-objective model validation is illustrated.

Citation Chahinian, N., Tournoud, M.-G., Perrin, J.-L. & Picot, B. (2011) Flow and nutrient transport in intermittent rivers: a modelling case-study on the Vène River using SWAT 2005. Hydrol. Sci. J. 56(2), 268–287.  相似文献   

2.
Abstract

Placer mines are located in river valleys, along river benches, or along the pathways of ancient channels. Open-pit mining alters the stream hydrology and enhances sediment transport. The present study focuses on sediment transport in the area of the platinum placer mining located at the north of Russia’s Kamchatka Peninsula (Seynav-Galmoenan placer deposits). Based on hydrological field investigations, a conceptual model was derived to assess anthropogenic effects on the total sediment budget of rivers. The model illustrates key processes controlling sediment dynamics in the Vyvenka River basin. Field work included water-discharge and sediment-load measurements, assessment of annual channel change in rivers in mining site areas, and evaluation of the relative importance of sediment sources and transport processes. In this study, we estimated total sediment delivery from opencast placer mining of 60 t year-1; the annual mass wasting rate ranges from 2 to 5.5 kg m-2 year-1, which is three orders of magnitude higher than from non-mined streams. Mass wasting dominates surface erosion on the hillslopes and produces significant wastewater effluents; however, erosion of the artificially stratified channel reaches is the primary contributor to the annual sediment yield of the mined rivers (21.4%).
Editor D. Koutsoyiannis

Citation Chalov, S.R., 2014. Effects of placer mining on suspended sediment budget: case study of north of Russia’s Kamchatka Peninsula. Hydrological Sciences Journal, 59 (5), 1081–1094.  相似文献   

3.
Abstract

Abstract Since the end of the 1950s, suspended matter measurements have been carried out in the streams and rivers of Cameroon. Despite the fact that these are often point measurements, they provide a framework for a global approach towards studying the regimes of suspended sediment transport in these rivers. The objective here is to assess the intensity of sediment transport and to determine the principal factors which influence it, according to the main climatic units. The influence of human activities is pointed out. It appears that steep slopes, population density, soil cultivation and cattle grazing are the essential factors. The sediment load in these rivers is increasing with latitude with 20–40 g m-3 at the Equator, 80–100 g m-3 in the transition zones and 150–160 g m-3 in the dry tropical zones. The choice of drainage basin size for the characterisation of the rate of effective erosion is indispensable. In fact, in large drainage basins (5 × 104 km2), there is an integration of heterogeneous geomorphological, phytogeographical, pedological and anthropogenic characteristics into average characteristics which do not show the influence of local conditions on sediment transport.  相似文献   

4.
Abstract

Available data on suspended sediment transported by rivers in the Maghreb are reviewed for 130 drainage basins. These data allow a new estimate to be proposed for the delivery of river sediment to both the Atlantic Ocean and the Mediterranean Sea from the Maghreb region. The influences of several environmental factors (precipitation, runoff, drainage area size and lithology) on mechanical erosion and fluvial sediment transport are analysed. Finally, a multiple regression model is proposed to estimate the river sediment yields in the Maghreb.  相似文献   

5.
Abstract

The quantification of the sediment carrying capacity of a river is a difficult task that has received much attention. For sand-bed rivers especially, several sediment transport functions have appeared in the literature based on various concepts and approaches; however, since they present a significant discrepancy in their results, none of them has become universally accepted. This paper employs three machine learning techniques, namely artificial neural networks, symbolic regression based on genetic programming and an adaptive-network-based fuzzy inference system, for the derivation of sediment transport formulae for sand-bed rivers from field and laboratory flume data. For the determination of the input parameters, some of the most prominent fundamental approaches that govern the phenomenon, such as shear stress, stream power and unit stream power, are utilized and a comparison of their efficacy is provided. The results obtained from the machine learning techniques are superior to those of the commonly-used sediment transport formulae and it is shown that each of the input combinations tested has its own merit, as they produce similarly good results with respect to the data-driven technique employed.
Editor Z.W. Kundzewicz  相似文献   

6.
《水文科学杂志》2013,58(6):1270-1285
Abstract

The transport of sediment load in rivers is important with respect to pollution, channel navigability, reservoir filling, longevity of hydroelectric equipment, fish habitat, river aesthetics and scientific interest. However, conventional sediment rating curves cannot estimate sediment load accurately. An adaptive neuro-fuzzy technique is investigated for its ability to improve the accuracy of the streamflow—suspended sediment rating curve for daily suspended sediment estimation. The daily streamflow and suspended sediment data for four stations in the Black Sea region of Turkey are used as case studies. A comparison is made between the estimates provided by the neuro-fuzzy model and those of the following models: radial basis neural network (RBNN), feed-forward neural network (FFNN), generalized regression neural network (GRNN), multi-linear regression (MLR) and sediment rating curve (SRC). Comparison of results reveals that the neuro-fuzzy model, in general, gives better estimates than the other techniques. Among the neural network techniques, the RBNN is found to perform better than the FFNN and GRNN.  相似文献   

7.
The last two decades have witnessed the development and application of well-balanced numerical models for shallow flows in natural rivers.However,until now there have been no such models for flows with non-uniform sediment transport.This paper presents a 1D well-balanced model to simulate flows and non-capacity transport of non-uniform sediment in alluvial rivers.The active layer formulation is adopted to resolve the change of bed sediment composition.In the framework of the finite volume Slope Llmiter Centred(SLIC) scheme,a surface gradient method is incorporated to attain well-balanced solutions to the governing equations.The proposed model is tested against typical cases with irregular topography,including the refilling of dredged trenches,aggradation due to sediment overloading and flood flow due to landslide dam failure.The agreement between the computed results and measured data is encouraging.Compared to a non-well-balanced model,the well-balanced model features improved performance in reproducing stage,velocity and bed deformation.It should find general applications for non-uniform sediment transport modelling in alluvial rivers,especially in mountain areas where the bed topography is mostly irregular.  相似文献   

8.
Abstract

Suspended sediment and bedload discharges in sand-bed rivers shape semi-arid landscapes and impact sediment delivery from these landscapes, but are still incompletely understood. Suspended sediment and bedload fluxes of the intermittent Exu River, Brazil, were sampled by direct measurements. The highest suspended sediment concentration observed was 4847.4 mg L-1 and this value was possibly associated with the entrainment of sediment that was deposited in the preceding year. The bedload flux was well related to the stream power and the river efficiently transported all available bedload with a mean rate of 0.0047 kg m-1 s-1, and the percentage of bedload to suspended sediment varied between 4 and 12.72. The bed sediment of Exu River was prone to entrainment and showed a proclivity for transport. Thus, sand-bed and gravel-bed rivers of arid environments seem to exhibit the same mobility in the absence of armour layer.

Editor D. Koutsoyiannis; Associate editor B. Touaibia

Citation Cantalice, J.R.B., Cunha Filho, M., Stosic, B.D., Piscoya, V.C., Guerra, S.M.S., and Singh, V.P., 2013. Relationship between bedload and suspended sediment in the sand-bed Exu River, in the semi-arid region of Brazil. Hydrological Sciences Journal, 58 (8), 1789–1802.  相似文献   

9.
Abstract

In dealing with the transient sediment transport problem, the commonly used uncoupled model may not be suitable. The uncoupling technique is intended to separate the physical coupling phenomenon of water flow and sediment transport into two independent processes. Very often, as a result, severe numerical oscillation and solution instability problems appear in the simulation of transient sediment transport in alluvial channels. The coupled model, which simultaneously solves water flow continuity, momentum and sediment continuity equations, gives fewer numerical oscillation and solution instability problems. In this article, a coupled model using a matrix double-sweep method to solve the system of nonlinear algebraic equations has been developed. Several test runs designed on the basis of a schematic model have been performed. The numerical oscillation and solution instability problems have been investigated through a comparison with those obtained from an uncoupled model. Based on the proposed case studies, it can be concluded that, for transient bed evolution, the performance of the coupled model is much better than that of the uncoupled model. The numerical oscillation is reduced and the solution is more stable. This newly developed coupled model was also applied to the Cho-Shui River in Taiwan. This application study implied that the effect of the peaky flood wave propagation on the bed evolution could be simulated better by the coupled model than by the uncoupled model.  相似文献   

10.
Abstract

Sediment transport capacity is a key concept in determining rates of detachment and deposition in process-based erosion models, yet limited studies have been conducted on steep slopes. We investigated the effects of sediment size on transport capacity of overland flow in a flume. Unit flow discharge ranged from 0.66 to 5.26?×?10-3 m2 s-1, and slope gradient varied from 8.7 to 42.3%. Five sediment size classes (median diameter, d 50, of 0.10, 0.22, 0.41, 0.69 and 1.16 mm) were used. Sediment size was inversely related to transport capacity. The ratios of average transport capacity of the finest class to those of the 0.22, 0.41, 0.69 and 1.16 mm classes were 1.09, 1.30, 1.55 and 1.92, respectively. Sediment transport capacity increased as a power function of flow discharge and slope gradient (R2?=?0.98), shear stress (R2?=?0.95), stream power (R2?=?0.94), or unit stream power (R2?=?0.76). Transport capacity generally decreased as a power function of sediment size (exponent?=??0.35). Shear stress and stream power predicted transport capacity better than unit stream power on steep slopes when transport capacity was <7 kg m-1 s-1. Sediment transport capacity increased linearly with mean flow velocity. Critical or threshold velocity increased as a power function of sediment size (R2?=?0.93). Further studies with fine soil particles are needed to quantify the effects of sediment size on transport capacity of overland flow on steep slopes.

Citation Zhang, G.-H., Wang, L.-L., Tang, K.-M., Luo, R.-T. & Zhang, X.C. (2011) Effects of sediment size on transport capacity of overland flow on steep slopes. Hydrol. Sci. J. 56(7), 1289–1299.  相似文献   

11.
This paper describes meandering alluvial rivers with mean annual suspended-sediment concentrations of more than 100 kgm?3 on the Loess Plateau, China, and explains their formation as caused by the effect of hyperconcentrated water flow. When the river is dominated by hyperconcentrated flow, the rate of energy expenditure required for sediment transport declines significantly. Accordingly, the river channel adjusts itself to a lower channel gradient by increasing the river length, resulting in a meandering channel. Since the stable transportation of sediment by hyperconcentrated flow is dependent on river channel boundary conditions, the latter play an important role in the formation of meanders of this kind. The paper also discusses the conditions for the discrimination of meandering and braided rivers in this area.  相似文献   

12.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
This numerical investigation was carried out to advance mechanistic understanding of sediment transport under sheet flow conditions. An Euler–Euler coupled two-phase flow model was developed to simulate fluid–sediment oscillatory sheet flow. Since the concentration of sediment particles is high in such flows, the kinematics of the fluid and sediment phases are strongly coupled. This model includes interaction forces, intergranular stresses and turbulent stress closure. Each phase was modeled via the Reynolds-Averaged Navier–Stokes equations, with interphase momentum conservation accounting for the interaction between the phases. The generation and transformation of turbulence was modeled using the two-equation k–εkε turbulence model. Concentration and sediment flux profiles were compared with experimental data for sheet flow conditions considering both symmetric and asymmetric oscillatory flows. Sediment and fluid velocity variations, concentration profiles, sediment flux and turbulence parameters of wave-generated sheet flow were studied numerically with a focus on sediment transport characteristics. In all applications, the model predictions compared well with the experimental data. Unlike previous investigations in which the flow is driven by a horizontal pressure gradient, the present model solves the Navier–Stokes equations under propagating waves. The model’s ability to predict sediment transport under oscillatory sheet flow conditions underscores its potential for understanding the evolution of beach morphology.  相似文献   

14.
Abstract

This paper aims at initiating a fundamental understanding of the suspended load transport of river sediment in unsteady flow. Laboratory erosion tests as well as artificial flood experiments are used to evaluate the influence of the transient regime on the transport efficiency of the flow. The erosion experiments reveal that the transport capacity is augmented when the unsteadiness of the flow increases. However, the influence of the transient regime is counteracted by the cohesive properties of the river bed. Field experiments with artificial floods released from a reservoir into a small canal confirm these findings and show a relationship between the friction velocity and the suspended load transport. An appropriate parameter β is proposed to evaluate the impact of the transient regime on the transport of suspended sediment.  相似文献   

15.
《水文科学杂志》2012,57(2):183-199
ABSTRACT

Current estimations of sediment transport at the watershed scale are limited by the difficulty of accurately simulating the sediment transfer along the main stem. The typical approach to simulating watershed sediment transport involves the adoption of hydrologic sediment routing schemes that do not fully capture the contribution and timing of side tributaries, and the inclusion of a simplified channel geometry that does not include its hydraulic feedback. In this paper, we present the results of a coupled hydrologic-hydraulic model of sediment transport applied to a small watershed of Iowa. The model was developed to simulate both the hydrologic network and non-equilibrium sediment transport that occur during a flood. The model results highlight the importance of including side tributaries in order to capture a realistic duration of shear stress that ultimately affects sediment transport. Comparisons with bank erosion measurements indicate that the presented approach is also promising to estimate sediment sources along the main stem.  相似文献   

16.
This study has hypothesized that for many rivers the trade-off between flow accumulation and the decrease in slope along channel length means that stream power increases downstream and, moreover, that given the low slope angles in headwater and low-order streams, they would have insufficient stream power to erode let alone transport sediment. The study considered the stream power profile, the particle travel distances and the application of the Hjulström curve based on the velocity profile of nine, large UK catchments. The study showed that:
  1. Some rivers never showed a maximum in their longitudinal stream power profile, implying that some rivers never develop a deposition zone before they discharge at the tidal limit.
  2. Particle travel distances during a bankfull discharge event showed that for some rivers 91% of the upper main channel would not be cleared of sediment. Furthermore, while some rivers could transport a 2 mm particle their entire length in one bankfull event, for another river it would take 89 such events.
  3. The Hjulström curve shows that for three of the study rivers the upper 20 km of the river was not capable of eroding a 2 μm particle.
  4. The study has shown that for all rivers studied, erosion is focused downstream and deposition upstream. Many UK rivers have a dead zone where, on time scales of the order of centuries, no erosion or transport occurs and erosion only occurs in the lower courses of the channel where discharge rather than slope dominates – we propose these as underpowered rivers.
© 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

17.
Soil erosion is a major contributor to land degradation in the Loess Plateau in China. To clarify the sediment transport capacity of overland flow influenced by hydraulic parameters, such as shear stress, sand shear stress (hydraulic gradient partition method and hydraulic radius partition method), mean flow velocity, Froude number, stream power, and unit stream power, indoor experiments with eight-unit-width flow discharges from 0.0667 × 10−3 to 0.3333 × 10−3 m2·s−1, six slope gradients from 3.49 to 20.79%, and two kinds of sand soils (d50 = 0.17 and 0.53 mm) were systematically investigated. A nondimensional method was adopted in data processing. Results showed that there was a partition phenomenon of relation curves because of the different median grain diameters. The correlation between the nondimensional stream power and nondimensional sediment transport capacity was the highest, followed by the correlation between the nondimensional unit stream power and nondimensional sediment transport capacity. However, there was a poor correlation between the flow intensity indices of velocity category and nondimensional sediment transport capacity. Nondimensional stream power, nondimensional unit stream power, and nondimensional shear stress could predict sediment transport capacity well. Ignoring the partition phenomenon of the relation curves, stream power could be used to predict sediment transport capacity, with a coefficient of determination of .85. Furthermore, a general flow intensity index was obtained to predict sediment transport capacity of overland flow. Finally, an empirical formula for predicting sediment transport capacity with a coefficient of determination of .90 was established by multiple regression analyses based on the general flow intensity index. During the analysis between measured sediment transport capacities in present study and predicted values based on Zhang model, Mahmoodabadi model, and Wu model, it was found that these three models could not accurately predict sediment transport capacities of this study because different models are estimated on the basis of different experimental conditions.  相似文献   

18.
Abstract

The impact of pollution incidents on rivers and streams may be predicted using mathematical models of solute transport. Practical applications require an analytical or numerical solution to a governing solute mass balance equation together with appropriate values of relevant transport coefficients under the flow conditions of interest. This paper considers two such models, namely those proposed by Fischer and by Singh and Beck, and compares their performances using tracer data from a small stream in Edinburgh, UK. In calibrating the models, information on the magnitudes and the flow rate dependencies of the velocity and the dispersion coefficients was generated. The dispersion coefficient in the stream ranged between 0.1 and 0.9 m2/s for a flow rate range of 13–437 L/s. During calibration it was found that the Singh and Beck model fitted the tracer data a little better than the Fischer model in the majority of cases. In a validation exercise, however, both models gave similarly good predictions of solute transport at three different flow rates.  相似文献   

19.
It has been thought for some time that bedload sediment transport rates may differ markedly in ephemeral and perennial rivers and, supporting this thought, there has been observation of very high rates of bedload transport by flash floods in the ephemeral river Nahal Yatir. However, until now, there has been no quantitative model resolving the observation, nor a theory capable of explaining why bedload transport rates by unsteady flash floods can be reasonably well described by bedload transport capacity formulae initially derived for steady flows. Here a time scale analysis of bedload transport is presented as pertaining to Nahal Yatir, which demonstrates that bedload transport can adapt sufficiently rapidly to capacity determined exclusively by local flow regime, and accordingly the transport capacity formulations developed for steady flows can be applied even under unsteady flows such as flash floods. Complementing the time scale analysis, a series of computational exercises using a coupled shallow water hydrodynamic model are shown to adequately resolve the observation of the very high rates of bedload transport by flash floods in Nahal Yatir. While bedload transport rates in ephemeral and perennial rivers differ remarkably when evaluated against a pure flow parameter such as specific stream power, they are essentially reconciled if assessed with a physically sensible parameter incorporating not only the flow regime but also the sediment particle size. The present finding underpins the practice of fluvial geomorphologists relating measured bedload transport to local flow and sediment characteristics only, irrespective of whether the flow is unsteady or steady. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Flow, sediment transport and bed deformation in alluvial rivers normally exhibit multiple time scales. Enhanced knowledge of the time scales can facilitate better approaches to the understanding of the fluvial processes. Yet prior studies of the time scales are based upon the concept of sediment transport capacity at low concentrations, which however is not generally applicable. This paper presents new formulations of the time scales of fluvial flow, suspended sediment transport and bed deformation, under the framework of shallow water hydrodynamics, non-capacity sediment transport and the theory of characteristics for the hyperbolic governing equations. The time scale of bed deformation in relation to that of flow depth is demonstrated to delimit the applicability region of mathematical river models, and the time scale of suspended sediment transport relative to that of the pertinent flow information is analyzed to address if the concept of sediment transport capacity is applicable. For shallow flows with high sediment concentrations, bed deformation may considerably affect the flow and a fully coupled model is normally required. In contrast, for deep flows at low sediment concentrations, a decoupled model is mostly justified. This pilot study of the time scales delivers a new theoretical basis, on which the interaction between flow, suspended sediment transport and bed deformation can be potentially better characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号