首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Civil infrastructure such as culverts and bridges are commonly designed using precipitation-based intensity–duration–frequency (PREC-IDF) curves, which assume that the occurrence of precipitation is in the form of rainfall and immediately available for the rainfall-runoff process. In snow-dominated regions, where most winter precipitation occurs as snow that melts during spring to early summer, the use of standard PREC-IDF curves may lead to substantial underestimation of design floods and high failure risk of infrastructure. In this context, we developed next-generation IDF (NG-IDF) curves that characterize the actual water reaching the land surface (i.e., rainfall plus snowmelt) to enhance standard infrastructure design in snow-dominated regions. This study evaluates the performance of NG-IDF curves coupled with U.S. Department of Agriculture Technical Release 55 hydrologic model in estimating design floods for 246 snowy locations in different hydroclimate regimes of the western United States. Design flood estimates from a well-validated continuous simulation using a physics-based hydrologic model, the Distributed Hydrology Soil Vegetation Model (DHSVM), were used as the performance benchmark. Compared with the benchmark estimates, the standard PREC-IDF curves led to substantial errors in design flood estimates, while the NG-IDF curves significantly reduced these errors. For example, the averaged error in the 50-year design flood estimates over the 246 locations was reduced from 31% with the use of PREC-IDF curves to 12% with the use of NG-IDF curves. Despite the different model structures, the single-event NG-IDF approach versus the continuous simulation DHSVM did not exhibit statistically significant differences in 91% of the 246 locations for the 50-year design flood estimates. This indicates a satisfactory performance of NG-IDF curves to estimate design flow under the conditions tested in the snow-dominated western United States. This article also presents technical suggestions and the limitations of infrastructure design using NG-IDF curves for regulatory agencies and practicing engineers.  相似文献   

2.
Intensity–duration–frequency (IDF) curves are used extensively in engineering to assess the return periods of rainfall events and often steer decisions in urban water structures such as sewers, pipes and retention basins. In the province of Québec, precipitation time series are often short, leading to a considerable uncertainty on the parameters of the probabilistic distributions describing rainfall intensity. In this paper, we apply Bayesian analysis to the estimation of IDF curves. The results show the extent of uncertainties in IDF curves and the ensuing risk of their misinterpretation. This uncertainty is even more problematic when IDF curves are used to estimate the return period of a given event. Indeed, standard methods provide overly large return period estimates, leading to a false sense of security. Comparison of the Bayesian and classical approaches is made using different prior assumptions for the return period and different estimation methods. A new prior distribution is also proposed based on subjective appraisal by witnesses of the extreme character of the event.  相似文献   

3.
This study presents spatio-temporal analysis of droughts in one of the most drought prone region in India–western Rajasthan and develops drought intensity-area-frequency curves for the region. The meteorological drought conditions are analyzed using 6-month standardized precipitation index (SPI-6) estimated at spatial resolution of 0.5° × 0.5°. Spatio-temporal analysis of SPI-6 indicates increase in frequency of droughts at the central part of the region. The non-parametric Mann–Kendall test for seasonal trend analysis showed increase in number of grids under drought during the study period. Further, bivariate frequency analysis of drought characteristics—intensity and areal extent is carried out using copula methods. For modeling joint dependence between drought variables, three copula families namely Gumbel-Hougaard, Frank and Plackett copulas are evaluated. Based on goodness-of-fit as well as upper tail dependence tests, it is found that the Gumbel-Hougaard copula best represents the drought properties. The copula-based joint distribution is used to compute conditional return periods and drought intensity–area–frequency (I–A–F) curves. The I–A–F curves could be helpful in risk evaluation of droughts in the region.  相似文献   

4.
ABSTRACT

Due to more frequent extreme rainfall incidents in recent years, many large cities are considering the construction of new drainage systems to cope with rainfall in the order of 100-year events. In such cases, T-year point rainfall events should be supplemented with areal reduction factors (ARF) to avoid overdesign. To facilitate an initial design, a procedure based on using Chicago Design Storms (CDS) in combination with intensity–duration–area (IDA) curves was developed to produce CDS-ARF input rainfall. By means of the time of concentration, a specific instantaneous unit hydrograph (IUH) was obtained for each subcatchment. Combination of CDS-ARF rains and the subcatchment IUHs using convolution integrals was used to produce inflow hydrographs to the drainage system. A sequential design procedure that successively includes subcatchments for the entire drainage system in the downstream direction is implemented and exemplified ensuring a consistent initial design.  相似文献   

5.
Combining time–amplitude and time–frequency information from seismic reflection data sets of different resolutions allows the analysis of anomalous reflections from very-shallow to great subsurface depths. Thus, it can enhance the imaging of subsurface features which have a frequency-dependent reflectivity such as gas. Analysing seismic data of different resolution in the time–amplitude and time–frequency domains is a powerful method to determine hydrocarbon migration pathways from deep reservoirs to the seafloor. This interpretation method has been applied to the formerly-glaciated offshore Queen Charlotte Basin hosting several seafloor pockmarks and mounds associated with the leakage of underlying hydrocarbon reservoirs. Low-frequency shadows observed in the time–frequency domain provide evidence of different resolutions that several anomalous reflection amplitudes may be attributed to the occurrence of gas. The seismic imagery shows that gas uses a fault to migrate from deep reservoirs included in Upper Mesozoic strata towards secondary reservoirs located along the fault plane into Neogene layers. Once gas reaches a porous cut-and-fill succession, migration changes from structurally- to stratigraphically-controlled before gas leaks through unconsolidated Quaternary sediments forming the shallow subsurface to eventually seep at the seafloor where pockmarks and carbonate mounds are formed.  相似文献   

6.
Abstract

Climate and soil characteristics vary considerably around the Lake Victoria basin resulting in high spatial and temporal variability in catchment inflows. However, data for estimating the inflows are usually sparsely distributed and error-prone. Therefore, modelled estimates of the flows are highly uncertain, which could explain early difficulties in reproducing the lake water balance. The aim of this study was to improve the estimates of catchment flow to Lake Victoria. The WASMOD model was applied to the Nzoia River, one of the major tributaries to Lake Victoria. Uncertainty was assessed within the GLUE framework. During calibration, log-transformation was performed on both simulated and observed flows. The results showed that, despite its simple structure, WASMOD produces acceptable results for the basin. For a Nash-Sutcliffe efficiency (NS) threshold of 0.6, the percentage of observations bracketed by simulations (POBS) was 74%, the average relative interval length (ARIL) was 0.93, and the maximum NS value was 0.865. The residuals were shown to be homoscedastic, normally distributed and nearly independent. When the NS threshold was increased to 0.8, POBS decreased to 54% with an improvement of ARIL to 0.49, highlighting the effect of the subjective choice of likelihood threshold.

Citation Kizza, M., Rodhe, A., Xu, C.-Y. & Ntale, H. K. (2011) Modelling catchment inflows into Lake Victoria: uncertainties in rainfall–runoff modelling for the Nzoia River. Hydrol. Sci. J. 56(7), 1210–1226.  相似文献   

7.
Samples from the surface of lava flows discharged by the 2012–2013 Tolbachik Fissure Eruption were found to contain oxysulfates of copper, sodium, and potassium: K2Cu3O(SO4)2 (fedotovite), NaKCu2O(SO4)2, and Na3K5Cu8O4(SO4)8. The last two phases have no naturally occurring or synthetic analogues that we are aware of. They form flattened crystals of prismatic to long-prismatic habits. The crystals of Na3K5Cu8O4(SO4)8 have a chemical composition corresponding to the empirical formula Na2.22K5.47Cu8.02S8.05O36. An X-ray analysis of this compound showed that it has a monoclinic symmetry, P2/c, a = 13.909(4), b = 4.977(1), c = 23.525(6) Å, β = 90.021(5)°, V = 1628.3(7) Å3. The crystal structure was determined by direct techniques and refined to yield R 1 for 3955 reflexes//web// with F 2 > 4σF. The compound NaKCu2O(SO4)2 also belongs to the monoclinic system, P2/c, a = 14.111(4), b = 4.946(1), c = 23.673(6) Å, β = 92.052(6)°, V = 1651.1(8) Å3. The structure was determined by direct techniques to yield a tentative structural model that has been refined up to R 1 = 0.135 for 4088 reflexes with F 2 > 4σF. The crystal structure of Na3K5Cu8O4(SO4)8 is based on chains of [O2Cu4]4+ consisting of rib-coupled oxy-centered tetrahedrons of (OCu4)6+. The chains are surrounded by sulfate radicals, resulting in columns of {[O2Cu4](SO4)4}4? aligned along the b axis. The interchain space contains completely ordered positions of Na+ and K+ cations. The principle underlying the connection of NaKCu2O(SO4)2 columns in the crystal structure of {[O2Cu4](SO4)4}4? is different, in view of the relation Na:K = 1 as contrasted with 3:5 for the compound Na3K5Cu8O4(SO4)8. The presence of oxy-centered tetrahedrons in the structure of these new compounds furnishes an indirect hint at the importance of polynuclear copper-oxygen radicals with centering oxygen atoms as forms of transport of copper by volcanic gases.  相似文献   

8.
Time–frequency characterization is useful in understanding the nonlinear and non-stationary signals of the hydro-climatic time series. The traditional Fourier transform, and wavelet transform approaches have certain limitations in analyzing non-linear and non-stationary hydro-climatic series. This paper presents an effective approach based on the Hilbert–Huang transform to investigate time–frequency characteristics, and the changing patterns of sub-divisional rainfall series in India, and explored the possible association of monsoon seasonal rainfall with different global climate oscillations. The proposed approach integrates the complete ensemble empirical mode decomposition with adaptive noise algorithm and normalized Hilbert transform method for analyzing the spectral characteristics of two principal seasonal rainfall series over four meteorological subdivisions namely Assam-Meghalaya, Kerala, Orissa and Telangana subdivisions in India. The Hilbert spectral analysis revealed the dynamic nature of dominant time scales for two principal seasonal rainfall time series. From the trend analysis of instantaneous amplitudes of multiscale components called intrinsic mode functions (IMFs), it is found that both intra and inter decadal modes are responsible for the changes in seasonal rainfall series of different subdivisions and significant changes are noticed in the amplitudes of inter decadal modes of two seasonal rainfalls in the four subdivisions since 1970s. Further, the study investigated the links between monsoon rainfall with the global climate oscillations such as Quasi Bienniel Oscillation (QBO), El Nino Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multidecadal Oscillation (AMO) etc. The study noticed that the multiscale components of rainfall series IMF1, IMF2, IMF3, IMF4 and IMF5 have similar periodic structure of QBO, ENSO, SN, tidal forcing and AMO respectively. As per the seasonal rainfall patterns is concerned, the results of the study indicated that for Assam-Meghalaya subdivision, there is a likelihood of extreme rare events at ~0.2 cycles per year, and both monsoon and pre-monsoon rainfall series have decreasing trends; for Kerala subdivision, extreme events can be expected during monsoon season with shorter periodicity (~2.5 years), and monsoon rainfall has statistically significant decreasing trend and post-monsoon rainfall has a statistically significant increasing trend; and for Orissa subdivision, there are chances of extremes rainfall events in monsoon season and a relatively stable rainfall pattern during post-monsoon period, but both monsoon and post-monsoon rainfall series showed an overall decreasing trend; for Telangana subdivision, there is a likelihood of extreme events during monsoon season with a periodicity of ~4 years, but both monsoon and post-monsoon rainfall series showed increasing trends. The results of correlation analysis of IMF components of monsoon rainfall and five climate indices indicated that the association is expressed well only for low frequency modes with similar evolution of trend components.  相似文献   

9.
ABSTRACT

Flow–duration curves (FDCs) are essential to support decisions on water resources management, and their regionalization is fundamental for the assessment of ungauged basins. In comparison with calibrated rainfall–runoff models, statistical methods provide data-driven estimates representing a useful benchmark. The objective of this work is the interpolation of FDCs from ~500 discharge gauging stations in the Danube. To this aim we use total negative deviation top-kriging (TNDTK), as multi-regression models are shown to be unsuitable for representing FDCs across all durations and sites. TNDTK shows a high accuracy for the entire Danube region, with overall Nash-Sutcliffe efficiency values computed in a leave-p-out cross-validation scheme (p equal to one site, one-third and half of the sites), all above 0.88. A reliability measure based on kriging variance is attached to each interpolated FDC at ~4000 prediction nodes. The GIS layer of regionalized FDCs is made available for broader use in the region.  相似文献   

10.
Flow–duration curves (FDCs) are essential to support decisions on water resources management, and their regionalization is fundamental for the assessment of ungauged basins. In comparison with calibrated rainfall–runoff models, statistical methods provide data-driven estimates representing a useful benchmark. The objective of this work is the interpolation of FDCs from ~500 discharge gauging stations in the Danube. To this aim we use total negative deviation top-kriging (TNDTK), as multi-regression models are shown to be unsuitable for representing FDCs across all durations and sites. TNDTK shows a high accuracy for the entire Danube region, with overall Nash-Sutcliffe efficiency values computed in a leave-p-out cross-validation scheme (p equal to one site, one-third and half of the sites), all above 0.88. A reliability measure based on kriging variance is attached to each interpolated FDC at ~4000 prediction nodes. The GIS layer of regionalized FDCs is made available for broader use in the region.  相似文献   

11.
The Qaidam Basin in the northeastern Qinghai–Tibetan Plateau (QTP) is one of the largest hyper-arid intermontane basins in the northern hemisphere, and has abundant records for the study on palaeo-lake level fluctuations and palaeoclimatic changes. Significant efforts have been invested to define the timing of shoreline deposits using radiocarbon dating. However, due to the dating limit, the absence of organic materials and carbon reservoir effects for radiocarbon dating in arid areas, it is difficult to establish a reliable chronology for shoreline deposits. Therefore, controversy exists regarding the chronology for the high lake level in the Qaidam Basin, as well in the QTP. Some proposed that high lake levels occurred during late Marine Isotope Stage (MIS) 3, while others recently argued that the highest lake level in the QTP and adjacent regions existed in MIS 5. In Gahai Lake (now a salt lake), we investigated a section comprising lacustrine and shoreline deposits, which was about 25 m above the present lake level. Seven samples were collected for quartz optically stimulated luminescence (OSL) dating. A sample collected from a fine sand layer (the bottom of the section, and 12 m above the present lake level), which was assumed to have been deposited underwater, gave an OSL age of 82 ± 8 ka. It suggested that the lake level was at least 12 m higher than present in late MIS 5. The high lake level could maintain till about 73 ± 6 ka, and then decreased. This lake level decrease resulted in a gravel layer deposit between 73 ± 6 and 63 ± 6 ka (roughly during MIS 4). The lake level rose again (about 24 m above the present lake level) between 63 ± 6 and 55 ± 5 ka (roughly in early MIS 3). No lacustrine or shoreline deposits higher than the top of the current section were found around Gahai Lake. Thus, higher than present lake levels in Gahai Lake occurred in both late MIS 5 and early MIS 3.  相似文献   

12.
Inspired by the idea of the iterative time–frequency peak filtering, which applies time–frequency peak filtering several times to improve the ability of random noise reduction, this article proposes a new cascading filter implemented using mathematic morphological filtering and the time–frequency peak filtering, which we call here morphological time–frequency peak filtering for convenience. This new method will be used mainly for seismic signal enhancement and random noise reduction in which the advantages of the morphological algorithm in processing nonlinear signals and the time–frequency peak filtering in processing nonstationary signals are utilized. Structurally, the scheme of the proposed method adopts mathematic morphological operation to first preprocess the signal and then applies the time–frequency peak filtering method to ultimately extract the valid signal. Through experiments on synthetic seismic signals and field seismic data, this paper demonstrates that the morphological time–frequency peak filtering method is superior to the time–frequency peak filtering method and its iterative form in terms of valid signal enhancement and random noise reduction.  相似文献   

13.
Floods play a critical role in geomorphic change, but whether peak magnitude, duration, volume, or frequency determines the resulting magnitude of erosion and deposition is a question often proposed in geomorphic effectiveness studies. This study investigated that question using digital elevation model differencing to compare and contrast three hydrologically distinct epochs of topographic change spanning 18 years in the 37-km gravel–cobble lower Yuba River in northern California, USA. Scour and fill were analysed by volume at segment and geomorphic reach scales. Each epoch's hydrology was characterized using 15-min and daily averaged flow to obtain distinct peak and recurrence, duration, and volume metrics. Epochs 1 (1999–2008) and 3 (2014–2017) were wetter than average with large floods reaching 3206 and 2466 m3/s, respectively, though of different flood durations. Epoch 2 (2008–2014) was a drought period with only four brief moderate floods (peak of 1245 m3/s). Total volumetric changes showed that major geomorphic response occurred primarily during large flood events; however, total scour and net export of sediment varied greatly, with 20 times more export in epoch 3 compared to epoch 1. The key finding was that greater peak discharge was not correlated with greater net and total erosion; differences were better explained by duration and volume above floodway-filling stage. This finding highlights the importance of considering flood duration and volume, along with peak, to assess flood magnitude in the context of flood management, frequency analysis, and resulting geomorphic changes.  相似文献   

14.
Soldatova  E. A.  Savichev  O. G.  Zhou  D.  Ivanova  I. S.  Li  J.  Dong  Y.  Sun  Z. 《Water Resources》2022,49(3):483-492
Water Resources - Data of studies of 2013–2019 were used to assess the current environmental-geochemical conditions of surface water and groundwater in the basin of the Ganjiang River, the...  相似文献   

15.
16.
Water Resources - Water quality dynamics along the Northern Dvina River is analyzed under the conditions of anthropogenic impact. Overall, river water is classified as very polluted. The cases of...  相似文献   

17.
Two methods for generating streamflow forecasts in a Sahelian watershed, the Sirba basin, were compared. The direct method used a linear relationship to relate sea-surface temperature to annual streamflow, and then disaggregated on a monthly time scale. The indirect method used a linear relationship to generate annual precipitation forecasts, a temporal disaggregation to generate daily precipitation and the SWAT (Soil and Water Assessment Tool) model to generate monthly streamflow. The accuracy of the forecasts was assessed using the coefficient of determination, the Nash-Sutcliffe coefficient and the Hit score, and their economic value was evaluated using the cost/loss ratio method. The results revealed that the indirect method was slightly more effective than the direct method. However, the direct method achieved higher economic value in the majority of cost/loss situations, allowed for predictions with longer lead times and required less information.  相似文献   

18.
Water Resources - Chlorophyll a concentration, the total abundance of bacteria, the number of bacterial cells with active metabolism, and the abundance of saprotrophic bacteria were studied in the...  相似文献   

19.
An important problem in frequency analysis is the selection of an appropriate probability distribution for a given sample data. This selection is generally based on goodness-of-fit tests. The goodness-of-fit method is an effective means of examining how well a sample data agrees with an assumed probability distribution as its population. However, the goodness of fit test based on empirical distribution functions gives equal weight to differences between empirical and theoretical distribution functions corresponding to all observations. To overcome this drawback, the modified Anderson–Darling test was suggested by Ahmad et al. (1988b). In this study, the critical values of the modified Anderson–Darling test statistics are revised using simulation experiments with extensions of the shape parameters for the GEV and GLO distributions, and a power study is performed to test the performance of the modified Anderson–Darling test. The results of the power study show that the modified Anderson–Darling test is more powerful than traditional tests such as the χ2, Kolmogorov–Smirnov, and Cramer von Mises tests. In addition, to compare the results of these goodness-of-fit tests, the modified Anderson–Darling test is applied to the annual maximum rainfall data in Korea.  相似文献   

20.
Bitumen from the Nanpanjiang Basin occurs mainly in the Middle Devonian and Upper Permian reef limestone paleo-oil reservoirs and reserves primarily in holes and fractures and secondarily in minor matrix pores and bio-cavities. N2 is the main component of the natural gas and is often associated with pyrobitumen in paleo-oil reservoirs. The present study shows that the bitumen in paleo-oil reservoirs was sourced from the Middle Devonian argillaceous source rock and belongs to pyrobitumen by crude oil cracking under high temperature and pressure. But the natural gas with high content of N2 is neither an oil-cracked gas nor a coal-formed gas generated from the Upper Permian Longtan Formation source rock, instead it is a kerogen-cracked gas generated at the late stage from the Middle Devonian argilla- ceous source rock. The crude oil in paleo-oil reservoirs completely cracked into pyrobitumen and methane gas by the agency of hugely thick Triassic deposits. After that, the abnormal high pressure of methane gas reservoirs was completely destroyed due to the erosion of 2000--4500-m-thick Triassic strata. But the kerogen-cracked gas with normal pressure was preserved under the relatively sealed condition and became the main body of the gas shows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号