共查询到20条相似文献,搜索用时 0 毫秒
1.
This study presents a high-resolution and multi-temporal drought climatology for Mauritius based on calculated standardized precipitation index (SPI) using mean monthly rainfall for the period 1953–2007. A monthly mean SPI varying from +3.4 to ?2.7 indicates the occurrence of extremely wet and dry conditions, and collocated SPI indicates more frequent mild drought conditions. Spatial maps of rainfall trends and SPI show mostly neutral to severely dry conditions, but sparse regions of extremely wet and dry conditions are also observed. An increase in the frequency of dry years after the 1990s is noted, while most of the extreme wet conditions are found to have occurred between 1972 and 1988. More frequent short-duration wet events are observed on the 3- and 6-month time scales compared to dry events. On the 12- and 24-month time scales the frequency of both dry and wet periods is almost the same, with the dry events lasting longer. 相似文献
2.
ABSTRACTDroughts can have serious negative impacts on the water quality needed for irrigated agriculture. The Metropolitan region of Chile is a relevant producer of high-value crops and is prone to droughts. Standardized Drought Indices were used to characterize meteorological and hydrological droughts for the period from 1985 to 2015. To understand the relationship between droughts and water quality, we evaluated the correlations between daily discharge and surface water quality observations. The threshold level method was used to compare physicochemical parameters during hydrological drought periods with the Chilean water quality thresholds for agricultural uses. A significant (p < 0.05) negative relationship between discharge and electrical conductivity and major ions was found in most of the basin. Hydrological stations located in irrigation districts exceeded the official thresholds for these parameters during hydrological drought periods seriously threatening irrigated agriculture of the region. 相似文献
3.
Shanhu Jiang Menghao Wang Liliang Ren Chong‐Yu Xu Fei Yuan Yi Liu Yujie Lu Hongren Shen 《水文研究》2019,33(7):1075-1088
Climate change and human activities are two major driving forces affecting the hydrologic cycle, which further influence the stationarity of the hydrologic regime. Hydrological drought is a substantial negative deviation from the normal hydrologic conditions affected by these two phenomena. In this study, we propose a framework for quantifying the effects of climate change and human activities on hydrological drought. First, trend analysis and change‐point test are performed to determine variations of hydrological variables. After that, the fixed runoff threshold level method (TLM) and the standardized runoff index (SRI) are used to verify whether the traditional assessment methods for hydrological drought are applicable in a changing environment. Finally, two improved drought assessment methods, the variable TLM and the SRI based on parameter transplantation are employed to quantify the impacts of climate change and human activities on hydrological drought based on the reconstructed natural runoff series obtained using the variable infiltration capacity hydrologic model. The results of a case study on the typical semiarid Laohahe basin in North China show that the stationarity of the hydrological processes in the basin is destroyed by human activities (an obvious change‐point for runoff series is identified in 1979). The traditional hydrological drought assessment methods can no longer be applied to the period of 1980–2015. In contrast, the proposed separation framework is able to quantify the contributions of climate change and human activities to hydrological drought during the above period. Their ranges of contributions to hydrological drought calculated by the variable TLM method are 20.6–41.2% and 58.8–79.4%, and the results determined by the SRI based on parameter transplantation method are 15.3–45.3% and 54.7–84.7%, respectively. It is concluded that human activities have a dominant effect on hydrological drought in the study region. The novelty of the study is twofold. First, the proposed method is demonstrated to be efficient in quantifying the effects of climate change and human activities on hydrological drought. Second, the findings of this study can be used for hydrological drought assessment and water resource management in water‐stressed regions under nonstationary conditions. 相似文献
4.
In this article, by using the daily precipitation data measured at 58 meteorological stations, spatial and temporal variability of daily precipitation including zero rainfall values (called “precipitation”) and without zero rainfall values (called “rain”) and four precipitation extrema (P0, P20, P50, and P100 representing the daily precipitation with the magnitude smaller than 0.1 mm, bigger than 20 mm, 50 mm, and 100 mm per day, respectively) in the Yangtze River Delta (YRD) during 1958–2007 were analyzed, and the effects of urbanization were further investigated. Results indicate that (i) differing from the downward trends in 1958–1985, daily precipitation and rain in 1986–2007 show slowly downward trends in the mid YRD but show upward trends in the northern and southern YRD. (ii) Spatial and temporal variability of the rain is more complex than daily precipitation. Both of them become smaller but show more obvious fluctuations in 1986–2007. (iii) Urbanizations cause not only the urban rainfall island problem but also more obvious fluctuations of rain intensity in the mid YRD, reflecting more uncertainty of daily precipitation variability. (iv) Urbanizations have little effects on the variability of P0 and P100 but cause notable increases of P20 and P50. (v) The spatial variability of daily precipitation and precipitation extrema in 1958–1985 clearly shows a breakpoint at 30°20′N latitude, but the breakpoint disappears afterward because of the effects of urbanization. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Drought is a temporary, random and regional climatic phenomenon, originating due to lack of precipitation leading to water deficit and causing economic loss. Success in drought alleviation depends on how well droughts are defined and their severity quantified. A quantitative definition identifies the beginning, end, spatial extent and the severity of drought. Among the available indices, no single index is capable of fully describing all the physical characteristics of drought. Therefore, in most cases it is useful and necessary to consider several indices, examine their sensitivity and accuracy, and investigate for correlation among them. In this study, the geographical information system‐based Spatial and Time Series Information Modeling (SPATSIM) and Daily Water Resources Assessment Modeling (DWRAM) software were used for drought analysis on monthly and daily bases respectively and its spatial distribution in both dry and wet years. SPATSIM utilizes standardized precipitation index (SPI), effective drought index (EDI), deciles index and departure from long‐term mean and median; and DWRAM employs only EDI. The analysis of data from the Kalahandi and Nuapada districts of Orissa (India) revealed that (a) droughts in this region occurred with a frequency of once in every 3 to 4 years, (b) droughts occurred in the year when the ratio of annual rainfall to potential evapotranspiration (Pae/PET) was less than 0·6, (c) EDI better represented the droughts in the area than any other index; (d) all SPI, EDI and annual deviation from the mean showed a similar trend of drought severity. The comparison of all indices and results of analysis led to several useful and pragmatic inferences in understanding the drought attributes of the study area. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
6.
《水文科学杂志》2013,58(3):538-549
Abstract Trend analysis was performed on streamflow data for a collection of stations on the Canadian Prairies, in terms of spring and summer runoff volumes, peak flow rates and peak flow occurrences, as well as an annual volume measure, for analysis periods of 1966–2005, 1971–2005, and 1976–2005. The Mann-Kendall statistical test for trend and bootstrap resampling were used to identify the trends and to determine the field significance of the trends. Partial correlation analysis was used to identify relationships between hydrological variables that exhibit a significant trend and meteorological variables that exhibit a significant trend. Noteworthy results include decreasing trends in the spring snowmelt runoff event volume and peak flow, decreasing trends (earlier occurrence) in the spring snowmelt runoff event peak date and decreasing trends in the seasonal (1 March–31 October) runoff volume. These trends can be attributed to a combination of reductions in snowfall and increases in temperatures during the winter months. 相似文献
7.
Streamflow trends and climate linkages in the source region of the Yellow River,China 总被引:1,自引:0,他引:1
Much of the discussion on hydrological trends and variability in the source region of the Yellow River centres on the mean values of the mainstream flows. Changes in hydrological extremes in the mainstream as well as in the tributary flows are largely unexplored. Although decreasing water availability has been noted, the nature of those changes is less explored. This article investigates trends and variability in the hydrological regimes (both mean values and extreme events) and their links with the local climate in the source region of the Yellow River over the last 50 years (1959–2008). This large catchment is relatively undisturbed by anthropogenic influences such as abstraction and impoundments, enabling the characterization of widely natural, climate‐driven trends. A total of 27 hydrological variables were used as indicators for the analysis. Streamflow records from six major headwater catchments and climatic data from seven stations were studied. The trend results vary considerably from one river basin to another, and become more accentuated with longer time period. Overall, the source region of the Yellow River is characterized by an overall tendency towards decreasing water availability. Noteworthy are strong decreasing trends in the winter (dry season) monthly flows of January to March and September as well as in annual mean flow, annual 1‐, 3‐, 7‐, 30‐ and 90‐day maxima and minima flows for Maqu and Tangnag catchments over the period 1959–2008. The hydrological variables studied are closely related to precipitation in the wet season (June, July, August and September), indicating that the widespread decrease in wet season precipitation is expected to be associated with significant decrease in streamflow. To conclude, decreasing precipitation, particularly in the wet season, along with increasing temperature can be associated with pronounced decrease in water resources, posing a significant challenge to downstream water uses. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
长江流域降水变化及其趋势演变 总被引:1,自引:0,他引:1
本文对中国长江流域降水趋势进行了分析.指出对月降水量而言,20世纪后50年不同区域出现1不胃的降水趋势变化特征.趋势插补法研究表明中国降水时空分布趋势十分明显.对长江流域长期降水资料分析研究指出夏季月份降水时间更集中,而对年降水而言在一些站则表现出明显的周期变化. 相似文献
9.
10.
In this article, we investigated the variability of precipitation conditions in the Haihe River basin (HRB) during 1961–2010 by analyzing four daily precipitation scenarios. These scenarios were set with the values of, equal to 0 mm/day, 10–20 mm/day, 20–50 mm/day, and greater than 50 mm/day, which were denoted as P0, P10, P20, and P50, respectively. Results indicate that the mean values of daily precipitation decline, and its fluctuation becomes weak with years in HRB. The contour of daily precipitation with the mean value of 1.4 mm/day moves more than 100 km toward southeast in the basin from 1960s to 2000s. The variations of four precipitation scenarios show difference. The Tianjin and Langfang cities were the P0 drought center in HRB after 1980s, and the days and regions without precipitation increase with years. The magnitude of P10 extrema shows no significant changes over the last 50 years, but the rainfall centers vary with areas in HRB. The magnitude of P20 extrema shows no obvious changes in 1961–2000 but increases in 2000s. The magnitude of P50 extrema obviously declines in the last 50 years, with the rainfall center moving from northeast to south of HRB. Urbanization impacts are reflected in some cities in 1980s and 1990s, but after 2000, the urbanization impacts were not clearly detected due to the significant precipitation decreases in HRB. In summary, precipitation decrease is caused by the decreases of P50 extrema rather than P10 and P20 extrema in HRB, which would be favorable for the flood resources utilization through ample‐low flow operations over space. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
11.
On the basis of the mean air temperature, precipitation, sunshine duration and pan evaporation at 23 meteorological stations in the headwater catchment of the Yellow River basin from 1960 to 2001, the long‐term monotonic trend and abrupt changes for major climate variables have been investigated. The plausible monotonic trend of annual climatic time series are detected using a non‐parametric method. The abrupt changes have been investigated in terms of a 5 year moving averaged annual series, using the moving t‐test (MTT) method, Yamamoto method and Mann–Kendall method. The results showed that the annual air temperature has increased by 0·80 °C in the headwater catchment of the Yellow River basin during the past 42 years. One obvious cold period and one warm period were detected. The warmest centre was located in the northern part of the basin. The long‐term trend for annual precipitation was not significant during the same period, but a dry tendency was detected. According to the Kendall slope values, the declining centre for annual precipitation was located in the eastern part and the centre of the study area. The long‐term monotonic trend for annual sunshine duration and pan evaporation were negative. The average Kendall slopes are ? 29·96 h/10 yr and ? 39·63 mm/10 yr, respectively. The tests for abrupt changes using MTT and Yamamoto methods show similar results. Abrupt changes occurred in the mid 1980s for temperature, in the late 1980s for precipitation and in the early 1980s for sunshine duration and pan evaporation. It can be seen that the abrupt changes really happened in the 1980s for the climate variables. Different results are shown using the Mann–Kendall method. Both the abrupt changes of temperature and precipitation took place in the early 1990s, and that of pan evaporation occurred in the 1960s. The only abrupt change in sunshine duration happened during the similar period (in the 1980s) with the results detected by the MTT and Yamamoto methods. The abrupt changes which occurred in the 1990s and 1960s are not detectable using the MTT and Yamamoto methods because of the data limitation. However, the results tested by the MTT and Yamamoto methods exhibited great consistency. Some of the reasons may be due to the similar principles for these two methods. Different methods testing the abrupt climatic changes have their own merits and limitations and should be compared based on their own assumption and applicable conditions when they are used. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
12.
The Tibetan Plateau has one of the most complex climates in the world. Analysis of the climate in this region is important for understanding the climate change worldwide. In this study, climate patterns and trends in the Tibetan Plateau were analysed for the period from 1961 to 2001. Air temperature and precipitation were analysed on monthly and annual time scales using data collected from the National Meteorological Centre, China Meteorological Administration. Nonlinear slopes were estimated and analysed to investigate the spatial and temporal trends of air temperature and precipitation in the Tibetan Plateau using a Mann–Kendall method. Spatial analysis of air temperature and precipitation variability across the Tibetan Plateau was undertaken. While most trends are local in nature, there are general basinwide patterns. Temperature during the last several decades showed a long‐term warmer trend, especially the areas around Dingri and Zogong stations, which formed two increasing centres. Only one of the stations investigated exhibited decreasing trend, and this was not significant. Precipitation in the Tibetan Plateau has increased in most regions of the study area over the past several decades, especially in the eastern and central part, while the western Tibetan Region exhibited a decreased trend over the same period. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
13.
Otto LANSER Dipl. Ing. Dr. techn. 《水文科学杂志》2013,58(1):83-93
English Summary In former times the inhabitants of alpine regions looked upon glaciers as an uncanny and dangerous realm which they avoided as far as possible. It was only around the middle of the 18th Century that man became gradually aware of the beauty of the mountains, and approximately at the same time science started to take an interest in glaciers. Most of the questions raised in this field have been solved since. However, even in our times it is not sufficiently well known that glaciers, which are responsible for the characteristics of the regime of alpine rivers, are interesting not only from the point of view of physical geography, but are also of great importance for the economy and technical development of alpine countries. Torrents which are fed by the melted ice, carry great quantities of water at periods when other streams frequently run dry. Nevertheless, in the terms of hydraulic power economy, it would be an over simplification to consider glaciers as reservoirs. It must not be forgotten, that in the Alps precipitation is highest during the summer months, and consequently that rivers carry more water during that season than during any other period of the year. The presence of glaciers adds to the extreme situation, and therefore the equalisation of seasonal differences in the runoff of glaciers necessary for power economy requires more storage capacity than is needed for catchment areas without glaciers. On the other hand, there are also arid zones in the Alps, where conditions are entirely different. I am thinking of the deep valleys, running east to west, which are screened from rain by high mountain ranges, as for instance in the Wallis, the Vintschgau, parts of Western Tyrol and the Engadine. In these valleys it is particularly the slopes open to the south and exposed to constant insolation which show the typical characteristics and vegetation of arid zones. Precipitation during the growing season is often far less than the 600mm which is considered as the minimum needed for most types of cultivation, so much so that artificial irrigation has been practised for many generations. Whenever possible, the aqueducts, often very primitive, are fed by the glacier runoff of the large mountain massifs which never run dry. In some parts of the Wallis and in the South and West Tyrol, the water had to be conducted long distances and across difficult terrain; the construction of these primitive aqueducts was therefore a truly difficult task, as financial and technical resources available for that purpose were very inadequate. This additional water-supply produced by glaciers in summer has a very definite effect on the large rivers rising in the Alps and flowing down in all directions, to name a few of them, the Rhine, the Inn, the Drave, the Rhône, the Adige etc. Not a single one of them has a low water level record in summer equal to that of the Weser or the Elbe and many other rivers of Central Europe which are not fed by glaciers. This low water level in summer has naturally a very detrimental effect on the navigation of rivers, and also on their capacity to replenish ground-water resources. The abundance of glacier runoff assures a fairly steady supply of water to the first mentioned rivers even in their lower courses, a fact which is of special importance for hydraulic economy in general and for hydraulic energy economy in particular. The rich potential of hydraulic energy in Jugoslavia, for instance, suffers from the fact that the quantity of water carried by the karst-rivers is considerably smaller in summer than it is in winter. The river Drave with its tributaries fed by glacier runoff from the Alps in Carynthia and East Tyrol, is practically the only river in Jugoslavia used to a considerable extent for the production of hydraulic power. It carries even more water in summer than during other seasons. This river, which serves to equalise the seasonal production of energy is therefore most valuable for the power economy of the country. Short-term changes in the size of glaciers which are the subject of our present symposium, are causing the development of glacier lakes of which there exist several types. Most dangerous are those in larger valleys, caused by the tongue of a side glacier forming a dam, for instance here in the Ötztal Alps, at the Gurgler and at the Rofener Eissee near Vent. Other lakes develop in the basins left behind by the tongues of former glaciers. Water suddenly released from glacier lakes due to a breach of the ice or moraine dam, has frequently been the cause of terrible catastrophes. Attempts have therefore been made to protect the valleys against floods by the construction of flood reservoirs suitably situated below the glacier. An example of this type is the reservoir dam which the Austrian torrent-control authorities constructed in the Martellvalley (South Tyrol) in 1898/99 to prevent damage from an eventual breach in the banks of a glacier lake which had developed. Nowadays the large reservoirs constructed for hydro-electric power provide even greater protection. Reservoirs for power plants in the Alps, which are created by the construction of large dams, require the existence of basins hollowed out by former glaciers during a long geological period. Outside of the glaciated areas, such basins can generally be created only by artificially blocking up a river-valley. This type of reservoir can be easily distinguished from that described above by its entirely different outline. It must finally be remembered that the large load of sediment carried by glacial rivers has its economic and technical problems. Although it will probably take centuries to fill up the largest hydro-electric reservoirs, or even to considerably reduce their storage capacity, there are many smaller lakes in which this development will take no more than decades. Deposits of mud, for instance in the reservoir of the Margaritze, in the “Tauernfraftwerke” area had, after a mere decade accumulated to the extent that the power-plant administration had to install a floating suction dredger to remove at least part of the sediment. In this connection it was, however, important not to overload the river downstream with mud to such a degree as to cause damage to the fish population. Careful observation was needed to find out to what extent the river was able to cope with the artificial inflow of mud, and to follow the dispersion of the peak values of the suspesion load. Nowadays waters destined for the generation of hydro-electric power are collected at the highest possible altitudes. An interesting example of the application of modern methods of this type is the collection of the runoff from beneath the Brandner Ferner in the Silvretta from where it is conveyed to the Lünersee. As a water intake on the surface was impossible due to the difficult terrain, a tunnel had to be driven through the rock bed of the glacier and there, immediately underneath it, in an ice cave, the water flows into a cage consisting of strong steel girders. This cage retains the large bolders, while the water from the bottom of the glacier runs off into the tunnel. 相似文献
14.
In this study, we investigate the impact of the spatial variability of daily precipitation on hydrological projections based on a comparative assessment of streamflow simulations driven by a global climate model (GCM) and two regional climate models (RCMs). A total of 12 different climate input datasets, that is, the raw and bias‐corrected GCM and raw and bias‐corrected two RCMs for the reference and future periods, are fed to a semidistributed hydrological model to assess whether the bias correction using quantile mapping and dynamical downscaling using RCMs can improve streamflow simulation in the Han River basin, Korea. A statistical analysis of the daily precipitation demonstrates that the precipitation simulated by the GCM fails to capture the large variability of the observed daily precipitation, in which the spatial autocorrelation decreases sharply within a relatively short distance. However, the spatial variability of precipitation simulated by the two RCMs shows better agreement with the observations. After applying bias correction to the raw GCM and raw RCMs outputs, only a slight change is observed in the spatial variability, whereas an improvement is observed in the precipitation intensity. Intensified precipitation but with the same spatial variability of the raw output from the bias‐corrected GCM does not improve the heterogeneous runoff distributions, which in turn regulate unrealistically high peak downstream streamflow. GCM‐simulated precipitation with a large bias correction that is necessary to compensate for the poor performance in present climate simulation appears to distort streamflow patterns in the future projection, which leads to misleading projections of climate change impacts on hydrological extremes. 相似文献
15.
Based on a three-month-scale standardized precipitation index (SPI-3) computed from the available rainfall data of 13 stations of Niger, meteorological drought trends, periodicities and the relationships with 10 oceanic–atmospheric variables were analysed using the Mann-Kendall test, continuous wavelet transform and cross-wavelet analysis, respectively. The results revealed a significant (p < 5%) increase in drought at five of the 13 stations. A common dominant drought periodicity of 2 years was found at all of the stations, whereas significant periodicities varied from 2 to 32 years at six stations. Among the considered climate indices, South Atlantic sea-surface temperature, Southern Oscillation Index, sea-level pressure, geopotential height and relative humidity from the Atlantic basin oscillated in anti-phase relative to the SPI-3 at an inter-annual to decadal time scale from 1960 to 1990. In this period, relative humidity from the Mediterranean basin and zonal wind oscillated in phase with the drought index. 相似文献
16.
Some previous studies have shown that drying‐up of the lower Yellow River resulted from decreasing precipitation and excessive industrial and agricultural consumption of water from the middle and downstream regions of the Yellow River. On the basis of average air temperature, precipitation, and pan evaporation data from nearly 80 gauging stations in the Yellow River basin, the monotonic trends of major climate variables over the past several decades are analysed. The analysis was mainly made for 12 months and the annual means. The isograms for annual and typical months are given in the paper. The result shows that the average temperature in the study area exhibits an increasing trend, mainly because of the increase of temperature in December, January and February. The largest trend is shown in December and the smallest is in August. There are 65 of 77 stations exhibiting a downward trend for annual precipitation. In all seasons except summer, there is a similar trend in the upstream region of the Yellow River, south of latitude 35°N. It is interesting to note that the pan evaporation has decreased in most areas of the Yellow River basin during the past several decades. April and July showed the greatest magnitude of slope, and the area from Sanmenxia to Huayuankou as well as the Yiluo River basin exhibited the strongest declining trend. The conclusion is that the decreasing pan evaporation results from complex changes of air temperature, relative humidity, solar radiation, and wind speed, and both climate change and human activities have affected the flow regime of the Yellow River during the past several decades. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
17.
Historical records of monthly streamflow and precipitation coupled with mean, minimum, and maximum air temperatures for Washington State were used to study the variation and the trend characteristics that occurred over the last 50 years (1952–2002). Results indicate that the 1967 statewide water resource assessment needs to be updated because all of the stations used in that study exhibited a decreasing trend in annual streamflow ranging from ?0·9% to ?49·3%, with an arithmetic mean of ?11·7% and a median value of ?9·8%. Furthermore, a slightly decreasing trend in annual streamflow, although not statistically significant, was detected. The decreasing streamflow magnitude was about ?1·178 mm year?2, or 4·88 m3 s?1 year?1, which caused a decrease in annual streamflow in the state of about 58·9 mm, or 244 m3 s?1. This magnitude was about 9·6% of the average annual streamflow for the entire state from 1952 to 2002. Contrastingly, the overall annual precipitation in the entire state increased 1·375 mm year?2. Overall the annual means of daily mean, maximum, and minimum temperature increased by 0·122, 0·048, and 0·185 °C/10 years, respectively, during the study period. Thus the corresponding annual means of daily mean, maximum, and minimum temperatures increased by 0·61, 0·24, and 0·93 °C, respectively. All of these trends and magnitudes were found to vary considerably from station to station and month to month. The possible reasons resulting in these detected trends include, but are not limited to, human activities, climate variability and changes, and land use and land cover changes. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
AbstractUsing satellite observations of Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR and Terra-MODIS, together with climatic data in a physical evapotranspiration (ET) model, the spatio-temporal variability of ET is investigated in terrestrial China from 1981 to 2010. The model predictions of actual ET (ETa) are validated with ET values from in situ eddy covariance flux measurements and from basin water balance calculations. The national averaged crop reference ET (ETp) and ETa values are 916 ± 21 and 415 ± 12 mm year-1, respectively. The annual ETa pattern is closely associated with vegetation conditions in the eastern part of China, whereas ETa is low in the sparsely-vegetated areas and deserts in the northwestern region, corresponding to scarce rainfall events and amounts. The trends of ETp and ETa are remarkably different over the country, and the complementary relationship between ETp and ETa is revealed for the study period. Averaged over the whole country, ETa showed an increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend, consistent with the precipitation anomaly. Across the main vegetation types, annual ETa amounts are found to correspond clearly with the bands of precipitation and ETp. 相似文献
19.
This study is an attempt to determine the trends in monthly, annual and monsoon total precipitation series over India by applying linear regression, the Mann-Kendall (MK) test and discrete wavelet transform (DWT). The linear regression test was applied on five consecutive classical 30-year climate periods and a long-term precipitation series (1851–2006) to detect changes. The sequential Mann-Kendall (SQMK) test was applied to identify the temporal variation in trend. Wavelet transform is a relatively new tool for trend analysis in hydrology. Comparison studies were carried out between decomposed series by DWT and original series. Furthermore, visualization of extreme and contributing events was carried out using the wavelet spectrum at different threshold values. The results showed that there are significant positive trends for annual and monsoon precipitation series in North Mountainous India (zone NMI) and North East India (NEI), whereas negative trends were detected when considering India as whole.
EDITOR A. Castellarin ASSOCIATE EDITOR S. Kanae 相似文献
20.
Khouloud Gader Ahlem Gara Marnik Vanclooster Slaheddine Khlifi Mohamed Slimani 《水文科学杂志》2020,65(8):1300-1315
ABSTRACT Predicting the impacts of climate change on water resources remains a challenging task and requires a good understanding of the dynamics of the forcing terms in the past. In this study, the variability of precipitation and drought patterns is studied over the Mediterranean catchment of the Medjerda in Tunisia based on an observed rainfall dataset collected at 41 raingauges during the period 1973–2012. The standardized precipitation index and the aridity index were used to characterize drought variability. Multivariate and geostatistical techniques were further employed to identify the spatial variability of annual rainfall. The results show that the Medjerda is marked by a significant spatio-temporal variability of drought, with varying extreme wet and dry events. Four regions with distinct rainfall regimes are identified by utilizing the K-means cluster analysis. A principal component analysis identifies the variables that are responsible for the relationships between precipitation and drought variability. 相似文献