首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BIBLIOGRAPHIE     
Abstract

Time series modelling approaches are useful tools for simulating and forecasting hydrological variables and their change through time. Although linear time series models are common in hydrology, the nonlinear time series model, the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model, has rarely been used in hydrology and water resources engineering. The GARCH model considers the conditional variance remaining in the residuals of the linear time series models, such as an ARMA or an ARIMA model. In the present study, the advantages of a GARCH model against a linear ARIMA model are investigated using three classes of the GARCH approach, namely Power GARCH, Threshold GARCH and Exponential GARCH models. A daily streamflow time series of the Matapedia River, Quebec, Canada, is selected for this study. It is shown that the ARIMA (13,1,4) model is adequate for modelling streamflow time series of Matapedia River, but the Engle test shows the existence of heteroscedasticity in the residuals of the ARIMA model. Therefore, an ARIMA (13,1,4)-GARCH (3,1) error model is fitted to the data. The residuals of this model are examined for the existence of heteroscedasticity. The Engle test indicates that the GARCH model has considerably reduced the heteroscedasticity of the residuals. However, the Exponential GARCH model seems to completely remove the heteroscedasticity from the residuals. The multi-criteria evaluation for model performance also proves that the Exponential GARCH model is the best model among ARIMA and GARCH models. Therefore, the application of a GARCH model is strongly suggested for hydrological time series modelling as the conditional variance of the residuals of the linear models can be removed and the efficiency of the model will be improved.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Modarres, R. and Ouarda, T.B.M.J., 2013. Modelling heteroscedasticty of streamflow times series. Hydrological Sciences Journal, 58 (1), 1–11.  相似文献   

2.
Ani Shabri 《水文科学杂志》2013,58(7):1275-1293
Abstract

This paper investigates the ability of a least-squares support vector machine (LSSVM) model to improve the accuracy of streamflow forecasting. Cross-validation and grid-search methods are used to automatically determine the LSSVM parameters in the forecasting process. To assess the effectiveness of this model, monthly streamflow records from two stations, Tg Tulang and Tg Rambutan of the Kinta River in Perak, Peninsular Malaysia, were used as case studies. The performance of the LSSVM model is compared with the conventional statistical autoregressive integrated moving average (ARIMA), the artificial neural network (ANN) and support vector machine (SVM) models using various statistical measures. The results of the comparison indicate that the LSSVM model is a useful tool and a promising new method for streamflow forecasting.

Editor D. Koutsoyiannis; Associate editor L. See

Citation Shabri, A. and Suhartono, 2012. Streamflow forecasting using least-squares support vector machines. Hydrological Sciences Journal, 57 (7), 1275–1293.  相似文献   

3.
Abstract

The seasonal flood-limited water level (FLWL), which reflects the seasonal flood information, plays an important role in governing the trade-off between reservoir flood control and conservation. A risk analysis model for flood control operation of seasonal FLWL incorporating the inflow forecasting error was proposed and developed. The variable kernel estimation is implemented for deriving the inflow forecasting error density. The synthetic inflow incorporating forecasting error is simulated by Monte Carlo simulation (MCS) according to the inflow forecasting error density. The risk analysis for seasonal FLWL control was estimated by MCS based on a combination of the forecasting inflow lead-time, seasonal design flood hydrographs and seasonal operation rules. The Three Gorges reservoir is selected as a case study. The application results indicate that the seasonal FLWL control can effectively enhance flood water utilization rate without lowering the annual flood control standard.
Editor D. Koutsoyiannis; Associate editor A. Viglione

Citation Zhou, Y.-L. and Guo, S.-L., 2014. Risk analysis for flood control operation of seasonal flood-limited water level incorporating inflow forecasting error. Hydrological Sciences Journal, 59 (5), 1006–1019.  相似文献   

4.
Abstract

A real-time operational methodology has been developed for multipurpose reservoir operation for irrigation and hydropower generation with application to the Bhadra reservoir system in the state of Karnataka, India. The methodology consists of three phases of computer modelling. In the first phase, the optimal release policy for a given initial storage and inflow is determined using a stochastic dynamic programming (SDP) model. Streamflow forecasting using an adaptive AutoRegressive Integrated Moving Average (ARIMA) model constitutes the second phase. A real-time simulation model is developed in the third phase using the forecast inflows of phase 2 and the operating policy of phase 1. A comparison of the optimal monthly real-time operation with the historical operation demonstrates the relevance, applicability and the relative advantage of the proposed methodology.  相似文献   

5.
A. O. Pektas 《水文科学杂志》2017,62(14):2415-2425
This study examines the employment of two methods, multiple linear regression (MLR) and an artificial neural network (ANN), for multistep ahead forecasting of suspended sediment. The autoregressive integrated moving average (ARIMA) model is considered for one-step ahead forecasting of sediment series in order to provide a comparison with the MLR and ANN methods. For one- and two-step ahead forecasting, the ANN model performance is superior to that of the MLR model. For longer ranges, MLR models provide better accuracy, but there is an important assumption violation. The Durbin-Watson statistics of the MLR models show a noticeable decrease from 1.3 to 0.5, indicating that the residuals are not dependent over time. The scatterplots of the three methods (MLR, ARIMA and ANN) for one-step ahead forecasting for the validation period illustrate close fits with the regression line, with the ANN configuration having a slightly higher R2 value.  相似文献   

6.
Abstract

One of the world's largest irrigation networks, based on the Indus River system in Pakistan, faces serious scarcity of water in one season and disastrous floods in another. The system is dominated both by monsoon and by snow and glacier dynamics, which confer strong seasonal and inter-annual variability. In this paper two different forecasting methods are utilized to analyse the long-term seasonal behaviour of the Indus River. The study also assesses whether the strong seasonal behaviour is dominated by the presence of low-dimensional nonlinear dynamics, or whether the periodic behaviour is simply immersed in random fluctuations. Forecasts obtained by nonlinear prediction (NLP) and the seasonal autoregressive integrated moving average (SARIMA) methods show that the performance of NLP is relatively better than the SARIMA method. This, along with the low values of the correlation dimension, is indicative of low-dimensional nonlinear behaviour of the hydrological dynamics. A relatively better performance of NLP, using an inverse technique, may also be indicative of the low-dimensional behaviour. Moreover, the embedding dimension of the best NLP forecasts is in good agreement with the estimated correlation dimension. This provides evidence that the nonlinearity inherent in the monthly river flow due to the snowmelt and the monsoon variations dominate over the high-dimensional components and might be exploited for prediction and modelling of the complex hydrological system.

Citation Hassan, S. A. & Ansari, M. R. K. (2010) Nonlinear analysis of seasonality and stochasticity of the Indus River. Hydrol. Sci. J. 55(2), 250–265.  相似文献   

7.
Drought is one of the most devastating climate disasters. Hence, drought forecasting plays an important role in mitigating some of the adverse effects of drought. Data-driven models are widely used for drought forecasting such as ARIMA model, artificial neural network (ANN) model, wavelet neural network (WANN) model, support vector regression model, grey model and so on. Three data-driven models (ARIMA model; ANN model; WANN model) are used in this study for drought forecasting based on standard precipitation index of two time scales (SPI; SPI-6 and SPI-12). The optimal data-driven model and time scale of SPI are then selected for effective drought forecasting in the North of Haihe River Basin. The effectiveness of the three data-models is compared by Kolmogorov–Smirnov (K–S) test, Kendall rank correlation, and the correlation coefficients (R2). The forecast results shows that the WANN model is more suitable and effective for forecasting SPI-6 and SPI-12 values in the north of Haihe River Basin.  相似文献   

8.
Abstract

Abstract This work applies a fuzzy decision method to compare the performance of the grey model with that of the phase-space model, in forecasting rainfall one to three hours ahead. Four indices and two statistical tests are used to evaluate objectively the performance of the forecasting models. However, a trade-off must be made in choosing a suitable model because various indices may lead to different judgements. Therefore, a fuzzy decision model was applied to solve this problem and to make the optimum decision. The results of fuzzy decision making demonstrate that the grey model outperforms the phase-space model for forecasting one hour ahead, but the phase-space model performs better for forecasting two or three hours ahead.  相似文献   

9.
ABSTRACT

Ballona Creek watershed in Los Angeles, California provides a unique combination of heterogeneous urban land cover, a semi-arid environment, and a large outdoor water-use flux that presents a challenge for physically-based models. We ran simulations using the Noah Land Surface Model and Parflow-Community Land Model and compared to observations of evapotranspiration (ET), runoff, and land surface temperature (LST) for the entire 11-year study period. Both models were systematically adjusted to test the impact of land cover and urban irrigation on simulation results. Monthly total runoff and ET results are greatly improved when compared to an in-situ stream gauge and meteorological tower data: from 0.64 to 0.81 for the Nash–Sutcliffe efficiency (NSE) for runoff and from a negative NSE to 0.82 for ET. The inclusion of urban irrigation in semi-arid urban environments is found to be vital, but not sufficient, for the accurate simulation of variables in the studied models.  相似文献   

10.
ABSTRACT

Reliable seasonal forecasting of water resources variability may be of great value for agriculture and energy management in Ethiopia. This work aims to develop statistical forecasting of seasonal total water storage (TWS) anomalies in Ethiopia using sea-surface temperature and sea-level pressure indices. Because of the spatial and temporal variability of TWS over the country, Ethiopia is divided into four regions each having similar TWS dynamics. Periods of long-term water deficit observed in GRACE TWS products for the region are found to coincide with periods of meteorological drought. Multiple linear regression is employed to generate seasonal forecasting models for each region. We find that the skill of the resulting models varies from region to region, with R 2 from 0.33 to 0.73 and correlation from 0.27 to 0.77 between predicted and observed values (using leave-one-out cross-validation). The skill of the models is better than the climatology in all regions.  相似文献   

11.
Abstract

Abstract Is it possible to make seasonal and interannual forecasts of hydrological variables if one cannot predict next week’s rainfall? Contrary to common view, some scientists support the hypothesis that variations in mean global temperature and precipitation are controlled more by external forcing (solar variability and volcanic eruptions) than by increasing atmospheric concentration of greenhouse gases. Temperature and precipitation are connected with special phases of the 11-year sunspot cycle, which coincide with significant accumulation of energetic solar eruptions. Because of the possibility of identifying years with many solar eruptions, the attractive prospect emerges of the long-term hydrological forecasting based on cycles of solar activity. Starting from this assumption, an expert system was built based on a fuzzy neural network model for seasonal and interannual forecasting of the Po River discharge. It was found that indices of solar activity and of global circulation are sufficient to yield useful forecasts of hydrological variables.  相似文献   

12.
Abstract

The effect of data pre-processing while developing artificial intelligence (AI) -based data-driven techniques, such as artificial neural networks (ANN), model trees (MT) and linear genetic programming (LGP), is studied for Pawana Reservoir in Maharashtra, India. The daily one-step-ahead inflow forecasts are compared with flows generated from a univariate autoregressive integrated moving average (ARIMA) model. For the full-year data series, a large error is found mainly due to the occurrence of zero values, since the reservoir is located in an intermittent river. Hence, all the techniques are evaluated using two data series: 18 years of daily full-year inflow data (from 1 January to 31 December); and 18 years of daily monsoon season inflow data (from 1 June to 31 October) to take into account the intermittent nature of the data. The relevant range of inputs for each category is selected based on autocorrelation and partial autocorrelation analyses of the inflow series. Conventional pre-processing methods, such as transformation and/or normalization of data, do not perform well because of the large variation in magnitudes, as well as the many zero values (65% of the full-year data series). Therefore, the input data are pre-processed into un-weighted moving average (MA) series of 3 days, 5 days and 7 days. The 3-day MA series performs better, maintaining the peak inflow pattern as in the actual data series, while the coarser-scale (5-day and 7-day) MA series reduce the peak inflow pattern, leading to more errors in peak inflow prediction. The results indicate that AI methods are powerful tools for modelling the daily flow time series with appropriate data pre-processing, in spite of the presence of many zero values. The time-lagged recurrent network (TLRN) ANN modelling technique applied in this study maps the inflow forecasting in a better way than the standard multilayer perceptron (MLP) neural networks, especially in the case of the seasonal data series. The MT technique performs equally well for low and medium inflows, but fails to predict the peak inflows. However, LGP outperforms the other AI models, and also the ARIMA model, for all inflow magnitudes. In the LGP model, the daily full-year data series with more zero inflow values performs better than the daily seasonal models.

Citation Jothiprakash, V. & Kote, A. S. (2011) Improving the performance of data-driven techniques through data pre-processing for modelling daily reservoir inflow. Hydrol. Sci. J. 56(1), 168–186.  相似文献   

13.
ABSTRACT

The potential of different models – deep echo state network (DeepESN), extreme learning machine (ELM), extra tree (ET), and regression tree (RT) – in estimating dew point temperature by using meteorological variables is investigated. The variables consist of daily records of average air temperature, atmospheric pressure, relative humidity, wind speed, solar radiation, and dew point temperature (Tdew) from Seoul and Incheon stations, Republic of Korea. Evaluation of the model performance shows that the models with five and three-input variables yielded better accuracy than the other models in these two stations, respectively. In terms of root-mean-square error, there was significant increase in accuracy when using the DeepESN model compared to the ELM (18%), ET (58%), and RT (64%) models at Seoul station and the ELM (12%), ET (23%), and RT (49%) models at Incheon. The results show that the proposed DeepESN model performed better than the other models in forecasting Tdew values.  相似文献   

14.
Numerous models had been developed to predict the annual evapotranspiration (ET) in vegetated lands across various spatial scales. Fu's (Scientia Atmospherica Sinica, 5, 23–31) and Zhang's (Water Resources Research, 37, 701–708) ET simulation models have emerged as highly effective and have been widely used. However, both formulas have the non-quantitative parameters (m in Fu's model and w in Zhang's model). Based on the collected 1789 samples from global long-term hydrological studies, this study discovered significant relations between m (or w) and vegetation coverage or greenness in collected catchments. Then, we used these relations to qualify the parameters in both Zhang's and Fu's models. Results show that the ET estimation accuracies of Fu's (or Zhang's) model are significantly improved by about 13.49 mm (or 6.74 mm) for grassland and cropland, 38.52 mm (or 29.84 mm) for forest and shrub land (coverage<40%), 19.74 mm (or 16.17 mm) for mixed land (coverage<40%), respectively. However, Zhang's model shows higher errors compared with Fu's model, especially in regions with high m (or w) values, such as those with dense vegetations or P/E0 (annual precipitation to annual potential ET) smaller than 1.0. Additionally, this study also reveals that for regions with vegetation cover less than 40%, the annual ET is not only determined by vegetation types, but also relates to the sizes of vegetation-covered areas. Conversely, for regions with vegetation cover more than 40%, the annual ET is mainly determined by the vegetation density rather than vegetation types or vegetation coverage. Thus, linking m (or w) parameters with vegetation greenness allows leveraging remote sensing for forest management in data-scarce areas, safeguarding regional water resources. This study pioneers integrating vegetation-related indices with basin parameters, advocating for their crucial role in more effective hydrological modelling.  相似文献   

15.
Evapotranspiration (ET) is one of the main components of the hydrological cycle. It is a complex process driven mainly by weather parameters, and as such, is characterized by high non-linearity and non-stationarity. This paper introduces a methodology combining wavelet multiresolution analysis with a machine learning algorithm, the multivariate relevance vector machine (MVRVM), in order to predict 16 days of future daily reference evapotranspiration (ETo). This methodology lays the ground for forecasting the spatial distribution of ET using Landsat satellite imagery, hence the choice of 16 days, which corresponds with the Landsat overpass cycle. An accurate prediction of daily ETo is needed to improve the management of irrigation schedules as well as the operations of water supply facilities like canals and reservoirs. In this paper, various wavelet decompositions were performed and combined with MVRVM to develop hybrid models to predict ETo over a 16-days period. These models were compared to a MVRVM model, and models accuracy and robustness were evaluated. The addition of 10 days of forecasted air temperature as additional inputs to the forecasting models was also investigated. The results of the wavelet-MVRVM hybrid modeling methodology showed that a reliable forecast of ETo up to 16 days ahead is possible.  相似文献   

16.
Atmospheric particulate matter (PM) is one of the pollutants that may have a significant impact on human health. Data collected over 7 years from the air quality monitoring station at the LD-III steelworks, belonging to the Arcelor-Mittal Steel Company, located in the metropolitan area of Avilés (Principality of Asturias, Northern Spain), is analyzed using four different mathematical models: vector autoregressive moving-average, autoregressive integrated moving-average (ARIMA), multilayer perceptron neural networks and support vector machines with regression. Measured monthly, the average concentration of pollutants (SO2, NO and NO2) and PM10 (particles with a diameter less than ?10 μm) is used as input to forecast the monthly average concentration of PM10 from one to 7 months ahead. Simulations showed that the ARIMA model performs better than the other models when forecasting 1 month ahead, while in the forecast from one to 9 months ahead the best performance is given by the support vector regression.  相似文献   

17.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

Hydrological models are commonly used to perform real-time runoff forecasting for flood warning. Their application requires catchment characteristics and precipitation series that are not always available. An alternative approach is nonparametric modelling based only on runoff series. However, the following questions arise: Can nonparametric models show reliable forecasting? Can they perform as reliably as hydrological models? We performed probabilistic forecasting one, two and three hours ahead for a runoff series, with the aim of ascribing a probability density function to predicted discharge using time series analysis based on stochastic dynamics theory. The derived dynamic terms were compared to a hydrological model, LARSIM. Our procedure was able to forecast within 95% confidence interval 1-, 2- and 3-h ahead discharge probability functions with about 1.40 m3/s of range and relative errors (%) in the range [–30; 30]. The LARSIM model and the best nonparametric approaches gave similar results, but the range of relative errors was larger for the nonparametric approaches.

Editor D. Koutsoyiannis; Associate editor K. Hamed

Citation Costa, A.C., Bronstert, A. and Kneis, D., 2012. Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach. Hydrological Sciences Journal, 57 (1), 10–25.  相似文献   

19.
Christian Onof 《水文研究》2013,27(11):1600-1614
Under future climate scenarios, possible changes of drought patterns pose new challenges for water resources management. For quantifying and qualifying drought characteristics in the UK, the drought severity indices of six catchments are investigated and modelled by two stochastic methods: autoregressive integrated moving average (ARIMA) models and the generalized linear model (GLM) approach. From the ARIMA models, autocorrelation structures are first identified for the drought index series, and the unexplained variance of the series is used to establish empirical relationships between drought and climate variables. Based on the ARIMA results, mean sea level pressure and possibly the North Atlantic Oscillation index are found to be significant climate variables for seasonal drought forecasting. Using the GLM approach, occurrences and amounts of rainfall are simulated with conditioning on climate variables. From the GLM‐simulated rainfall for the 1980s and 2080s, the probabilistic characteristics of the drought severity are derived and assessed. Results indicate that the drought pattern in the 2080s is less certain than for the 1961–1990 period, based on the Shannon entropy, but that droughts are expected to be more clustered and intermittent. The 10th and 50th quantiles of drought are likely higher in the 2080s scenarios, but there is no evidence showing the changes in the 90th quantile extreme droughts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
《水文科学杂志》2013,58(6):1006-1020
Abstract

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0–3 month lead time, compared to rainfall distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号