首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Abstract

This study focuses on the calibration and validation of a dual-permeability soil water flow model for simulating soil water dynamics during the growing period in an irrigated corn field and during the rainy winter period in an uncropped field in northern Greece. The 1D numerical transient dual-permeability model MACRO 5.0 was used to describe the soil water dynamics, the water balance and deep percolation considering both macropore (two-domain) flow and non-macropore (one-domain) flow. The simulated results were compared with measurements of total soil water content at different depths in the soils. The values of the statistical criteria RMSE, E and CRM were better when macroporosity flow was considered; the soil water content showed better redistribution in the soil profile. The limited irrigation of the corn field during the growing period and the irrigation rates did not create conditions for deep percolation of water. In the uncropped field (bare soil), the wet conditions and the high rainfall during the simulation period created conditions for significant deep percolation, whether macropore flow was included in the model or not. The two-domain approach significantly affects the actual evaporation and the deep percolation. The difference between these two approaches is in the amount of deep percolation and the flow path of drainage flow. In the two-domain approach, most deep percolation follows the macropore domain (79.8%). The errors due to macropore parameter uncertainty and to the difficulties of measuring the macropore water content and flow were estimated by a sensitivity analysis for the more important parameters of the model.

Editor Z.W. Kundzewicz

Citation Antonopoulos, V.Z., Georgiou, P.E., and Kolotouros, C.A., 2013. Soil water dynamics in cropped and uncropped fields in northern Greece using a dual-permeability model. Hydrological Sciences Journal, 58 (8), 1748–1759.  相似文献   

2.
Abstract

Knowledge of the variability of soil water content (SWC) in space and time plays a key role in hydrological and climatic modelling. However, limited attention has been given to arid regions. The focus of this study was to investigate the spatio-temporal variability of surface soil (0–6 cm) water content and to identify its controlling factors in a region of the Gobi Desert (40 km2). The standard deviation of SWC decreased logarithmically as mean water content decreased, and the coefficient of variation of SWC exhibited a convex upward pattern. The spatial variability of SWC also increased with the size of the investigated area. The spatial dependence of SWC changed over time, with stronger patterns of spatial organization in drier and wetter conditions of soil wetness and stochastic patterns in moderate soil water conditions. The dominant factors regulating the variability of SWC changed from combinations of soil and topographical properties (bulk density, clay content and relative elevation) in wet conditions to combinations of soil and vegetation properties (bulk density, clay content and shrub coverage) in dry conditions. This study has important implications for the assessment of soil quality and the sustainability of land management in arid regions.  相似文献   

3.
4.
Abstract

Remote sensing techniques are useful for agro-hydrological monitoring at the farm scale because the availability of spatially and temporally distributed data improves agricultural models for irrigation and crop yield optimization under water scarcity conditions. This research focuses on the surface water content retrieval using active microwave data. Two semi-empirical models were chosen as these showed the best performances in simulating cross and co-polarized backscatter. Thus, these models were coupled to obtain reliable assessments of both soil water content and soil roughness. The use of the coupled model enables one to avoid using roughness measured in situ. Remote sensing images and in situ data were collected between April and July 2006 within the European Space Agency-funded project AgriSAR 2006. The images data set includes L-band in HH, VV and VH polarizations acquired from the airborne E-SAR sensor, operated by the German Aerospace Centre. Results were validated using in situ soil water content and roughness measurements. The results show that reliable assessment of both soil roughness (r 2 up to ?0.8) and soil water content (r 2 ? 0.9) can be retrieved in fields characterized by low fractional coverage.

Editor D. Koutsoyiannis; Associate editor C. Onof

Citation Capodici, F., Maltese, A., Ciraolo, G., La Loggia, G., and D’Urso, G., 2013. Coupling two radar backscattering models to assess soil roughness and surface water content at the farm scale. Hydrological Sciences Journal, 58 (8), 1677–1689.  相似文献   

5.
Abstract

A new approach was developed for estimating vertical soil water fluxes using soil water content time series data. Instead of a traditional fixed time interval, this approach utilizes the time interval between two sequential minima of the soil water storage time series to identify groundwater recharge events and calculate components of the soil water budget. We calculated water budget components: surface-water excess (Sw), infiltration less evapotranspiration (I – ET) and groundwater recharge (R) from May 2001 to January 2003 at eight locations at the USDA Agricultural Research Center, Beltsville, Maryland, USA. High uncertainty was observed for all budget components. This uncertainty was attributed to spatial and temporal variation in Sw, I – ET and R, and was caused by nonuniform rainfall distributions during recharge events, variability in the profile water content, and spatial variability in soil hydraulic properties. The proposed event-based approach allows estimating water budget components when profile water content monitoring data are available.

Citation Guber, A., Gish, T., Pachepsky, Y., McKee, L., Nicholson, T. & Cady, R. (2011) Event-based estimation of water budget components using a network of multi-sensor capacitance probes. Hydrol. Sci. J. 56(7), 1227–1241.  相似文献   

6.
Abstract

The study analyses a 2-year period of hourly rates of real evapotranspiration (ETr) derived from eddy covariance measurements and soil water contents at depths from 8 to 90 cm, monitored by time domain reflectometry probes at the grass-covered boundary-layer field site Falkenberg of the Lindenberg Meteorological Observatory – Richard-Aßmann-Observatory, operated by the German Meteorological Service (DWD). The ETr rates and soil water contents were compared with the results of a modelling approach consisting of the Penman-Monteith equation and the soil water balance model Hydrus-1D using a noncompensatory and a compensatory root-water uptake model. After optimization of soil hydraulic parameters by inverse modelling, using measured soil water contents as the objective function, simulated and measured model outputs showed good agreement for soil water contents above 90 cm depth and for ETr rates simulated by our modelling approaches using noncompensatory root-water uptake. The application of a compensatory root-water uptake model led to a decrease in the simulation quality for the total investigation period.

Editor Z.W. Kundzewicz

Citation Wegehenkel, M. and Beyrich, F., 2014. Modelling of hourly evapotranspiration and soil water content at the grass-covered boundary-layer field site Falkenberg, Germany. Hydrological Sciences Journal, 59 (2), 376–394.  相似文献   

7.
The processes of species obtaining water resources are crucial to evaluate the adaptability of plantations, which can affect the establishment and survival of restored ecosystems and functions of water-limited ecosystems. However, there are still limitations in understanding water use patterns of different four plantations (Populus sylvestris, Salix cheliophe, Hippophae rhamnoides and Artemisia ordosica) in the Qinghai Lake basin. Stable isotopes of xylem water of four individual species were analysed at different dunes located at the eastern shore of Qinghai Lake in 2018 and 2019. The purpose of this study was to explore potential water sources used by different life form plants, to identify whether the soil moisture content and root distribution determined the plants water use patterns. Results from the Bayesian mixing model MixSIAR showed that all species mainly uses three levels of soil water, but they extracted soil water from different layers in different growing seasons among species. All species primarily depended on water from upper soil layers at the early growing stage, but P. sylvestris and S. cheliophe also absorbed much proportion middle and deep soil layers' water in dry year of 2019. All four species shift to use middle or deep soil layer water rather than shallow water in July with the most rainfall and soil water content (SWC). However, it was only used by P. sylvestris and H. rhamnoides in 2018. In all, seasonal water use pattern of different species was affected by SWC, soil texture and root distribution. Compared with moratorium plantations such as S. cheliophe, mixed afforestation of P. sylvestris and H. rhamnoides maximized of soil water sources absorbed by the plants. The study can shed light on plant–water relationships to facilitate the woody species for afforestation and desertification restoration management in the semi-arid desert ecosystem.  相似文献   

8.
9.
Abstract

A pedological study of the reservoir bed of Al-Khoud Dam, Oman, revealed an unusual sedimentation pattern which evolved into an intricate composition of silt blocks surrounded by vertical cracks and horizontal layers filled with a “proppant” sand. The discovered soil morphology reflects the complex topology of water motion (infiltration–seepage–evaporation) through the sand-filled cracks/layers and blocks during both the rare flood events and ensuing periods of ponding, and the long, intervening dry periods. These naturally formed soils demonstrate an ability to preserve a large quantity of water inside the silty blocks at depths of 0.5 to 1.5 m, despite the high temperature and dryness of the topsoil. The hydrological optimality and “smartness” of these soils is attributed to the unique block-crack system. Natural, lush vegetation was found in adjacent zones of the reservoir bed, and acted as a footprint of the shallow “fractured perched aquifer”. Planted “ivy” (Convolvulaceae) in the vertical face of one pedon showed intensive growth without irrigation. Soil moisture content data confirmed the hydrological immobility of water in the blocks if not depleted by transpiration. The novel phenomena reported unveil the possible alteration of soil heterogeneity for optimization of the soil–water system in arid zone soils.
Editor D. Koutsoyiannis; Associate editor F.F. Hattermann

Citation Al-Ismaily, S.S., Al-Maktoumi, A.K., Kacimov, A.R., Al-Saqri, S.M., Al-Busaidi, H.A., and Al-Haddabi, M.H., 2013. Morphed block-crack preferential sedimentation in a reservoir bed: a smart design and evolution in nature. Hydrological Sciences Journal, 58 (8), 1779–1788.  相似文献   

10.
Abstract

The “thermal inertia” method to retrieve surface soil water content maps on bare or sparsely-vegetated soils is analysed. The study area is a small experimental watershed, where optical and thermal images (in day and night time) and in situ data were simultaneously acquired. The sensitivity of thermal inertia to the phase difference between incoming radiation and soil temperature is demonstrated. Thus, to obtain an accurate value of the phase difference, the temporal distance between thermographs using a three-temperature approach is evaluated. We highlight when a cosine correction of the temperature needs to be applied, depending on whether the thermal inertia formulation includes two generic acquisition times, or not. Finally, the deviation in soil water content retrieval is quantifies for given values of each parameter by performing a sensitivity analysis on the basic parameters of the thermal inertia method that are usually affected by calibration errors.

Citation Maltese, A., Bates, P.D., Capodici, F., Cannarozzo, M., Ciraolo, G., and La Loggia, G., 2013. Critical analysis of thermal inertia approaches for surface soil water content retrieval. Hydrological Sciences Journal, 58 (5), 1144–1161.

Editor D. Koutsoyiannis; Associate editor D. Hughes  相似文献   

11.
In the semi‐arid region of the Loess Plateau in China, a portable photosynthesis system (Li‐6400) and a portable steady porometer (Li‐1600) were used to study the quantitative relation between the soil water content (SWC) and trees' physiological parameters including net photosynthesis rate (Pn), carboxylation efficiency (CE), transpiration rate (Tr), water use efficiency of leaf (WUEL), stomatic conductivity (Gs), stomatal resistance (Rs), intercellular CO2 (Ci), and stomatal limitation (Ls). These are criteria for grading and evaluating soil water productivity and availability in forests of Black Locust (Robinia pseudoacacia) and Oriental Arborvitae (Platycladus orientalis). The results indicated: To the photosynthesis of Locust and Arborvitae, the SWC of less than 4.5 and 4.0% (relative water content (RWC) 21.5 and 19.0%) belong to “non‐productivity and non‐efficiency water”; the SWC of 4.5–10.0% (RWC 21.5–47.5%) and 4.0–8.5% (RWC 19.0–40.5%) belong to “low productivity and low efficiency water”; the SWC of 10.0–13.5% (RWC 47.5–64.0%) and 8.5–11.0% (RWC 40.5–52.0%) belong to “middle productivity and high efficiency water”; the SWC of 13.5–17.0% (RWC 64.0–81.0%) and 11.0–16.0% (RWC 52.0–76.0%) belong to “high productivity and middle efficiency water”; the SWC of 17.0–19.0% (RWC 81.0–90.5%) and 16.0–19.0% (RWC 76.0–90.5%) belong to “middle productivity and low efficiency water”; the SWC of more than 19.0% (RWC 90.5%) belongs to “low productivity and low efficiency water”. The SWC of about 13.5 and 11.0% (RWC 64.0 and 52.0%) are called “high productivity and high efficiency water”, which provides the further evidence for Locust and Arborvitae to get both higher productivity (Pn and CE) and the highest WUEL and adaptation to the local environment, respectively.  相似文献   

12.
Abstract

The effects of land use on river water chemistry in a typical karst watershed (Wujiang River) of southwest China have been evaluated. Dissolved major ions and Sr isotopic compositions were determined in 11 independent sub-watersheds of the Wujiang River to investigate the spatio-temporal variations in river water chemistry and their relationship to land use. The results show significant spatial variability in pH, major ions, total dissolved solids (TDS), and Sr isotopic compositions throughout the basin. Correlation analysis indicates that nitrogen content is significantly related to forest coverage. Nitrogen and potassium generally have higher values in the rainy season, and the percentage of agricultural land controlled NO3- levels, which originate from anthropogenic sources. Forest cover, which varies between 35% and 71%, has no statistically significant impact on river solute concentrations, but the TDS flux is low in sub-watersheds with greater forest cover. Geological sources have a significant influence on pH and Sr isotopic compositions in river water throughout the basin.
Editor D. Koutsoyiannis

Citation Han, G., Li, F., and Tan, Q., 2014. Effects of land use on water chemistry in a river draining karst terrain, southwest China. Hydrological Sciences Journal, 59 (5), 1063–1073.  相似文献   

13.
Perennial bioenergy crops with deep (>1 m) rooting systems, such as switchgrass (Panicum virgatum L.), are hypothesized to increase carbon storage in deep soil. Deeply rooted plants may also affect soil hydrology by accessing deep soil water for transpiration, which can affect soil water content and infiltration in deep soil layers, thereby affecting groundwater recharge. Using stable H and O isotope (δ2H and δ18O) and 3H values, we studied the soil water conditions at 20–30 cm intervals to depths of 2.4–3.6 m in paired fields of switchgrass and shallow rooted crops at three sites in the southern Great Plains of North America. We found that soil under switchgrass had consistently higher soil water content than nearby soil under shallow-rooted annual crops by a margin of 15%–100%. Soil water content and isotopic depth profiles indicated that hydraulic redistribution of deep soil water by switchgrass roots explained these observed soil water differences. To our knowledge, these are the first observations of hydraulic redistribution in deeply rooted grasses, and complement earlier observations of dynamic soil water fluxes under shallow-rooted grasses. Hydraulic redistribution by switchgrass may be a strategy for drought avoidance, wherein the plant may actively prevent water limitation. This raises the possibility that deeply rooted grasses may be used to passively subsidize soil water to more shallow-rooted species in inter-cropping arrangements.  相似文献   

14.
Abstract

Time series of soil moisture-related parameters provide important insights into the functioning of soil water systems. Analysis of patterns within such time series has been used in several studies. The objective of this work was to compare patterns in observed and simulated soil moisture contents to understand whether modelling leads to a substantial loss of information or complexity. The time series were observed at four plots in sandy soils within the USDA-ARS OPE3 experimental watershed, for a year; precipitation and evapotranspiration (ET) were measured and estimated, respectively, and used for soil water flow simulation with the HYDRUS-1D software. The information content measures are the metric entropy and the mean information gain, and complexity measures are the fluctuation complexity and the effective measure complexity. These measures were computed based on the binary encoding of soil moisture time series, and used probabilities of patterns, i.e. probabilities of joint or sequential appearance of symbol sequences. The information content of daily soil moisture time series was much smaller than that of rainfall data, and had higher complexity, indicating that soil worked essentially as an information filter. Information content and complexity decreased and increased with depth, respectively, demonstrating the increase in the information filtering action of soil. The information measures of simulated soil moisture content were close to those of the measurements, indicating the successful simulation of patterns in the data. The spatial variability of the information measures for simulated soil moisture content at all depths was less pronounced than the one of measured time series. Compared with precipitation and estimated ET, soil moisture time series had more structure and less randomness in this work. The information measures can provide useful complementary knowledge about model performance and patterns in observation and modelling results.

Citation Pan, F., Pachepsky, Y. A., Guber, A. K., & Hill, R. L. (2011) Information and complexity measures applied to observed and simulated soil moisture time series. Hydrol. Sci. J. 56(6), 1027–1039.  相似文献   

15.
Abstract

This paper analyses the temporal dynamics of soil water balance components in a representative recharge area of the Sierra de Gádor (Almeria, southeastern Spain) in two hydrological years. Two approaches are used to estimate daily potential recharge (PR): Approach 1 based on deriving PR from the water balance as the difference between measurements of rainfall (P) and actual evapotranspiration (E) obtained by eddy covariance; and Approach 2 with PR obtained from the dynamic pattern of the soil moisture (θ) recorded at two depths in the site's thin soil (average 0.35 m thickess). For the hydrological year 2003/04, which was slightly drier than the 30-year average, E accounted for 64% of rainfall and occurred mainly in late spring and early summer. The PR estimated by Approach 1 was 181 ± 18 mm year-1 (36% of rainfall), suggesting an effective groundwater recharge in the study area. In the unusually dry hydrological year 2004/05, E was about 215 mm year-1, close to the annual rainfall input, and allowing very little (8 ± 12 mm year-1) PR according to Approach 1. Estimation of PR based on Approach 2 resulted in PR rates lower than those found by Approach 1, because Approach 2 does not take into account the recharge that occurs through preferential flow pathways (cracks, joints and fissures) which were not monitored with the θ probes. Moreover, using Approach 2, the PR estimates differed widely depending on the time scale considered: with daily mean θ data, PR estimation was lower, especially in late spring, while θ data at 30 min resolution yielded a more reliable prediction of the fraction of total PR resulting from the downward movement of soil water by gravity.

Citation Cantón, Y., Villagarcía, L., Moro, M. J., Serrano-Ortíz, P., Were, A., Alcalá, F. J., Kowalski, A. S., Solé-Benet, A., Lázaro, R. & Domingo, F. (2010) Temporal dynamics of soil water balance components in a karst range in southeastern Spain: estimation of potential recharge. Hydrol. Sci. J. 55(5), 737–753.  相似文献   

16.
Abstract

A tension-saturated water slug descends through a homogenous soil after a rainfall (irrigation) event and shrinks due to transpiration by a distributed root-sink and evaporation. The upper (drainage) and lower (imbibition) sharp fronts of the slug separate it from the superjacent and subjacent vadose zones, where water is immobile. In the slug, the hydraulic conductivity is constant according to the Green-Ampt model. The capillary pressures as well as effective porosities on the fronts are given (generally, different) constants that can be viewed as a kind of hysteresis. A volumetric sink models mild (no desaturation of the slug) soil water withdrawal by the plant roots. The sink intensity varies with the depth from the soil surface and with time. Mathematically, the hydraulic head is immediately expressed by double integration of a governing 1-D flow equation. The pressure and kinematic conditions on the fronts result in a Cauchy problem for a system of two ODEs, which is solved by computer algebra routines.

Editor D. Koutsoyiannis

Citation Kacimov, A. and Obnosov, U., 2013. Pseudo-hysteretic double-front hiatus-stage soil water parcels supplying a plant–root continuum: the Green-Ampt-Youngs model revisited. Hydrological Sciences Journal, 58 (1), 1–12.  相似文献   

17.
Abstract

The Loess Plateau in China is overlain by deep and loose soil. As in other semi-arid regions, convective precipitation produces storms, typically of short duration, relatively high intensity and limited areal extent. Infiltration excess (Hortonian mechanism) of precipitation is conventionally assumed to be more prominent than saturation excess (Dunne mechanism) for storm runoff generation. This assumption is true at a point during the storm. However, the runoff generation mechanism is altered when the runoff is conditioned by a lateral redistribution movement of water, i.e. run-on, as the spatial scale increases. In the Loess Plateau, the effects of run-on may be significant, because of the deep and loose surface soil layer. In this study, the role of run-on for overland flow in the Upper Wei River basin, located in the Loess Plateau, is evaluated by means of a simple numerical model at the hillslope scale. The results show that almost all the Hortonian overland flow infiltrates into the soil along the flat hillslope and dry gully before it reaches the river channel. Most of the runoff is generated from the saturated soil near the river channel and from the subsurface. The run-on process takes much longer than the infiltration, facilitating rainfall–runoff modelling at a daily time step. A hydrological model is employed to investigate the characteristics of runoff generation in the Upper Wei River basin. The analysis shows that the subsurface flow contribution to total streamflow is more than 53% from October to March, while the overland flow contribution exceeds 72% from April to September.

Editor D. Koutsoyiannis; Associate editor Dawen Yang

Citation Liu, D.F., Tian, F.Q., Hu, H.C., and Hu, H.P., 2012. The role of run-on for overland flow and the characteristics of runoff generation in the Loess Plateau, China. Hydrological Sciences Journal, 57 (6), 1107–1117.  相似文献   

18.
Biocrust effects on soil infiltration have attracted increasing attention in dryland ecosystems, but their seasonal variations in infiltrability have not yet been well understood. On the Chinese Loess Plateau, soil infiltrability indicated by saturated hydraulic conductivity (Ks) of biocrusts and bare soil, both on aeolian sand and loess soil, was determined by disc infiltrometer in late spring (SPR), midsummer (SUM), and early fall (FAL). Then their correlations with soil biological and physiochemical properties and water repellency index (RI) were analysed. The results showed that the biocrusts significantly decreased Ks both on sand during SPR, SUM, and FAL (by 43%, 66%, and 35%, respectively; P < .05) and on loess (by 42%, 92%, and 10%, respectively; P <.05). As compared with the bare soil, the decreased Ks in the biocrusted surfaces was mostly attributed to the microorganism biomass and also to the increasing content of fine particles and organic matter. Most importantly, both the biocrusts and bare soil exhibited significant (F ≥ 11.89, P ≤ .003) seasonal variations in Ks, but their patterns were quite different. Specifically, the Ks of bare soil gradually decreased from SPR to SUM (32% and 42% for sand and loess, respectively) and FAL (29% and 39%); the Ks of biocrusts also decreased from SPR to SUM (59% and 92%) but then increased in FAL (36% and 588%). Whereas the seasonal variations in Ks of the biocrusts were closely correlated with the seasonal variations in RI, the RI values were not high enough to point at hydrophobicity. Instead of that, the seasonal variations of Ks were principally explained by the changes in the crust biomass and possibly by the microbial exopolysaccharides. We conclude that the biocrusts significantly decreased soil infiltrability and exhibited a different seasonal variation pattern, which should be carefully considered in future analyses of hydropedological processes.  相似文献   

19.
Abstract

The seasonal variation of land–atmosphere coupling strength has been examined using an extended series of atmospheric general circulation model (AGCM) simulations. In the Western Sahel of Africa, strong coupling strength for precipitation is found in April and May, just prior to and at the beginning of the monsoon season. At this time, heat and water fluxes from the surface are strongly controlled by land conditions, and the unstable conditions in the lower level of the troposphere, as induced by local land state, allow the surface fluxes to influence the variability of convective precipitation—and thus the timing of monsoon onset.

Editor Z. W. Kundzewicz

Citation Yamada, T.J., Kanae, S., Oki, T., and Koster, R.D., 2013. Seasonal variation of land–atmosphere coupling strength over the West African monsoon region in an atmospheric general circulation model. Hydrological Sciences Journal, 58 (6), 1276–1286.  相似文献   

20.
The extension and structure of functional traits variation in response to different soil factors between invasive and native plants are poorly understood. Functional traits and soil factors of the invasive plant Amaranthus palmeri and its coexisting plant Polygonum orientale are investigated under three heterogeneous habitats: roadside (rs), wasteland (wl), and riverbank (rb) in Tianjin, China. The shoot dry weight (SDW) and leaf nitrogen (LN) of A. palmeri are significantly higher compared with P. orientale, while A. palmeri has significantly lower leaf dry weight (LDW), leaf area (LA), leaf carbon (LC), and leaf C/N ratio under different habitats. The larger phenotypic plasticity of A. palmeri is one of the important reasons for their successful invasion to heterogeneous habitats. Similarly, the soil water content (SWC) of both species shows a significant difference (p < 0.05) with maximum in riverbank habitat to lowest in roadside habitat. Soil N/P ratio, C/N ratio, and C/P ratio of rb habitats are significantly lower compared to wl and rs habitats (p < 0.05). A redundancy analysis indicates that SWC is the dominant soil factor affecting the functional traits of A. palmeri and P. orientale. However, A. palmeri forms an environmental adaptation strategy by changing traits of SDW, LN, and leaf C/N ratio, which is different from P. orientale by changing traits of LA and LDW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号