首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

An analytical solution is developed to delineate the capture zone of a pumping well in an aquifer with a regional flow perpendicular to a stream, assuming a leaky layer between the stream and the aquifer. Three different scenarios are considered for different pumping rates. At low pumping rates, the capture zone boundary will be completely contained in the aquifer. At medium pumping rates, the tip of the capture zone boundary will intrude into the leaky layer. Under these two scenarios, all the pumped water is supplied from the regional groundwater flow in the aquifer. At high pumping rates, however, the capture zone boundary intersects the stream and pumped water is supplied from both the aquifer and the stream. The two critical pumping rates which separate these three scenarios, as well as the proportion of pumped water from the stream and the aquifer, are determined for different hydraulic settings.

Editor D. Koutsoyiannis; Associate editor A. Koussis

Citation Asadi-Aghbolaghi, M., Rakhshandehroo, G.R., and Kompani-Zare, M., 2013. An analytical approach to capture zone delineation for a well near a stream with a leaky layer. Hydrological Sciences Journal, 58 (8), 1813–1823.  相似文献   

2.
Ground-water levels in the Upper Floridan aquifer beneath the southeastern coast of South Carolina have undergone pumpage-induced declines approaching 20 ft below sea level at the southern end of Hilton Head Island. This scenario suggests the potential exists for the inducement of recharge to the Upper Floridan aquifer across the island, which could affect the quality of water being pumped by wells. However, low radiocarbon concentrations in ground-water samples (0.5 to 1.4 ± 0.1 PMC) indicate that most of the water is relict ground water reflecting prepumpage ground-water flow conditions in the Upper Floridan aquifer. The isotopic data indicate long residence times and water-chemistry evolution more characteristic of ground-water recharge occurring farther inland prior to the commencement of pumpage in the late 1800s. Radiocarbon concentrations (as Percent Modern Carbon) and stable carbon isotope ratios (as δ13C in dissolved inorganic carbon) determined during this study and reported in other studies on and around Hilton Head Island varied in a systematic manner. Heavier δ13C values (–2.8 to –1.6 per mil) in ground water beneath southern Hilton Head Island reflect ground-water discharge from prepumpage flowpaths originating over 100 miles away, hence a depletion in radiocarbon concentration with corrected ground-water ages no younger than 16,000 yrs BP. In contrast, lighter δ13C values (–13.9 to –8.67 per mil) beneath the northern part of the island indicate recent recharge as a result of water-level declines, and recharge in areas off the island that have not changed as a result of pumpage (evidenced by enrichment in radiocarbon with corrected ground-water ages no older than 4,000 yrs BP). This suggests that the δ13C composition of ground water in the Upper Floridan aquifer is a useful indicator of mixing between ground waters from different sources, and can be used to delineate recharge-discharge patterns. This approach may be applicable to other aquifers of highly evolved ground-water chemistry in regional carbonate aquifer systems that may be receiving recent recharge. Moreover, this approach could prove useful in delineating the contribution of recent water being captured by pumped wells as part of wellhead protection programs designed to assess aquifer vulnerability from surficial contaminant sources.  相似文献   

3.
Ground water from springs and public supply wells was investigated for hydrochemistry and environmental isotopes of 3H, 18O and D in Jeju volcanic island, Korea. The wells are completed in a basaltic aquifer and the upper part of hydrovolcanic sedimentary formation. Nitrate contamination is conspicuous in the coastal area where most of the samples have nitrate concentrations well above 1 mg NO3 N/l. Agricultural land use seems to have a strong influence on the distribution of nitrate in ground water. Comparison of stable isotopic compositions of precipitation and ground water show that ground water mostly originates from rainy season precipitation without significant secondary modification and that local recharge is dominant. 3H concentration of ground water ranged from nearly zero to 5 TU and is poorly correlated with vertical location of well screens. The occurrence of the 3H‐free, old ground water is due to the presence of low permeability layers near the boundary of the basaltic aquifer and the hydrovolcanic sedimentary formation, which significantly limits ground water flow from the upper basaltic aquifer. The old ground water exhibited background‐level nitrate concentrations despite high nitrate loadings, whereas young ground water had considerably higher nitrate concentrations. This correlation of 3H and nitrate concentration may be ascribed to the history of fertilizer use that has increased dramatically since the early 1960s in the island. This suggests that 3H can be used as a qualitative indicator for aquifer vulnerability to nitrate contamination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Abstract

A borehole is developed in a shallow multi-layered aquifer and used to derive the porosity, specific storage and hydraulic conductivity of the aquitard. Local values of hydrodynamical parameters are estimated from petrophysical analysis of core samples, and the empirical relationship between porosity and permeability. Vertical diffusivity is determined from the response of the aquitard to a loading cyclic signal using pressure records at different depths. Hydraulic conductivities deduced from the petrophysical analysis ranged from 10?8 to 10?10 m s?1 and are comparable with those of facies of marine/lacustrine clay observed in samples. The permeability values calculated based on diffusivity are within the range 10?9 to 10?11 m s?1 with a quasi-systematic bias of one order of magnitude. These values are average for a larger part of the aquitard and correspond to an integrated value. The methodology retained for the aquitard characterization is discussed with emphasis on the implications for the management of a complex aquifer system.

Citation Larroque, F., Cabaret, O., Atteia, O., Dupuy, A., and Franceschi, M., 2013. Vertical heterogeneities of hydraulic aquitard parameters: preliminary results from laboratory and in situ monitoring. Hydrological Sciences Journal, 58 (4), 912–929.  相似文献   

5.
Abstract

Preferential flow pathways in a fractured aquifer may yield abrupt reductions of the water velocity in a well. We propose a new device for measuring low (5–13 cm d-1) velocities in wells originating from fractures at different depths. The presented flowmeter has been applied in a well in the Bari (southern Italy) fractured aquifer. In the same well, the horizontal flowmeter velocity (9.6 cm d-1) at 0.5 m depth was compared with velocity (8 cm d-1) derived from a field tracer test, providing a value 16.5% higher. Moreover, the flowmeter measurements at 1.5 m depth gave a horizontal velocity of 7.2 cm d-1, which is 11% less than water flow velocity estimated from the field test. The new flowmeter implements the tracer point-dilution method in a plastic (PVC) pipe by causing the water flow to pass through an artificial filter. Laboratory calibration tests have confirmed the good performance of the proposed flowmeter technique, even for water flow up to 300 cm d-1. The flowmeter was sensitive to 0.1 cm d-1, with a detection limit of 1.5 cm d-1, i.e. half the measurable flow velocity of existing flowmeters in wells.

Editor D. Koutsoyiannis; Associate editor S. Grimaldi  相似文献   

6.
When the purpose of aquifer testing is to yield data for modeling aqueous mass transport, pumping tests and gradient measurement can only partially satisfy characterization requirements. Effective porosity, ground water flow velocity, and the vertical distribution of hydraulic conductivity within the aquifer are left as unknowns. Single well tracer methods, when added to the testing program, can be used to estimate these parameters. A drift, and pumpback test yields porosity and velocity, and point-dilution testing yields depth-discrete hydraulic information, A single emplacement of tracer into a test well is sufficient to conduct both tests. The tracer tests are facilitated by a simple method for injecting and evenly distributing the tracer solution into a wellbore, and by new ion-selective electrode instrumentation, specifically designed for submersible service, for monitoring the concentration of tracers such as bromide.  相似文献   

7.
In recent years, the water demand has been increasing considerably in Bojnourd, capital of Northern Khorasan province in NE of Iran, and the extracted water from Bojnourd alluvial aquifer, with an area of 65 km2, is not sufficient for residents. The required water is going to be supplied from Shirindare dam, located out of Bojnourd aquifer’s catchment area; therefore, the groundwater levels will rise in some parts of the aquifer, due to the return flow of supplied water, which will cause serious problems for the city. In this paper, the groundwater flow system of Bojnourd aquifer has been numerically simulated using MODFLOW code in GMS interface. The model, primarily, was calibrated for a steady state condition for the mean values of oneyear period (Sep. 2009 to Sep. 2010) which has a steady condition with low stresses on the aquifer. Then the model was run/calibrated for transient conditions for a two year period (Sep. 2007 to Sep. 2009). After determining the hydraulic properties of the aquifer and confirming their validity, different management scenarios, were applied to the model. Results reveal that groundwater levels in the urban area will rise by over 3 m, by infiltrating 40% of supplied water from the Shirindare dam into the aquifer. To manage the rising water levels, two different management scenarios were applied to the aquifer model. In doing so and with proper management of aquifer exploitation during critical situations, not only will the groundwater level drop; also the city of Bojnourd can develop urban landscaping by constructing sports/cultural camping area using the extra pumped water.  相似文献   

8.
Bacteria and viruses are ubiquitous in subterranean aquatic habitats. Bacterial abundance is known to vary with depth in aquifers; however, whether viral abundance varies with depth is less well known. Here we use flow cytometry (FCM) to enumerate bacteria and virus‐like particles (VLP) from groundwater depth profiles. Groundwater samples were obtained from a set of nested piezometers from depths of 15, 30, 45, 60, 80, and 90 m and bacteria and VLP abundances were determined in purged aquifer water and unpurged water at each slot depth. Mean bacterial abundance (cells / mL) was not significantly different in unpurged water (3.2 × 105) compared to purged water (1.4 × 105); however, mean VLP abundance (particles / mL) was significantly greater in unpurged water (4.4 × 105) compared to purged water (2.3 × 105). Purged water was used to investigate the aquifer depth profile and bacterial and VLP abundances were observed to vary significantly between depths. The virus‐bacteria ratio was determined and was observed to steadily increase with depth. Overall, our data indicate the dynamic nature of bacterial and viral abundances in subsurface environments which should be considered when designing groundwater microbial sampling methodologies.  相似文献   

9.
《水文科学杂志》2013,58(4):844-856
Abstract

The feasibility of aquifer storage and recovery (ASR) was tested in a deep aquifer near Koksijde, Belgium. To achieve this, oxic drinking water was injected into a deep aquifer (the Tienen Formation) that contains anoxic brackish water. The hydraulic properties of the aquifer were determined using a step-drawdown test. Chemical processes caused by the injection of the water were studied by two push—pull tests. The step-drawdown test was interpreted by means of an inverse numerical model, resulting in a transmissivity of 3.38 m2/d and a well loss coefficient of 0.00038 d2/m5. The push—pull tests identified mixing between the injection and pristine waters, and cation exchange, as the major processes determining the quality of the recovered water. Mobilization of DOC, aerobic respiration, denitrification and mobilization of phosphate were also observed.  相似文献   

10.
An innovative approach for regionalizing the 3‐D effective porosity field is presented and applied to two large, overexploited, and deeply weathered crystalline aquifers located in southern India. The method derives from earlier work on regionalizing a 2‐D effective porosity field in that part of an aquifer where the water table fluctuates, which is now extended over the entire aquifer using a 3‐D approach. A method based on geological and geophysical surveys has also been developed for mapping the weathering profile layers (saprolite and fractured layers). The method for regionalizing 3‐D effective porosity combines water table fluctuation and groundwater budget techniques at various cell sizes with the use of satellite‐based data (for groundwater abstraction), the structure of the weathering profile, and geostatistical techniques. The approach is presented in detail for the Kudaliar watershed (983 km2) and tested on the 730 km2 Anantapur watershed. At watershed scale, the effective porosity of the aquifer ranges from 0.5% to 2% in Kudaliar and between 0.3% and 1% in Anantapur, which agrees with earlier works. Results show that (a) depending on the geology and on the structure of the weathering profile, the vertical distribution of effective porosity can be very different and that the fractured layers in crystalline aquifers are not necessarily characterized by a rapid decrease in effective porosity and (b) that the lateral variations in effective porosity can be larger than the vertical ones. These variations suggest that within a same weathering profile, the density of open fractures and/or degree of weathering in the fractured zone may significantly vary from a place to another. The proposed method provides information on the spatial distribution of effective porosity that is of prime interest in terms of flux and contaminant transport in crystalline aquifers. Implications for mapping groundwater storage and scarcity are also discussed, which should help in improving groundwater resource management strategies.  相似文献   

11.
ABSTRACT

A borehole partially penetrating a confined aquifer and pumped at a constant rate is modelled, taking account of water stored within the casing of the borehole. A solution for drawdown in the Laplace transform domain is obtained. The proportion of aquifer water in well discharge is numerically evaluated, tabulated as a function of time and compared with results for a fully penetrating well. Modification of the fully penetrating well theory, for application to partially penetrating wells, was found to give comparable results to the more complete analysis for a partially penetrating well both at early and late times. A previous estimate of the time of pumping before sampling (ts) to minimize casing storage effects, based on the fully penetrating well theory, was confirmed by the partially penetrating well analysis and in fact was shown to be a conservative estimate (or overestimate) of the pumping time required when sampling from a partially penetrating well.  相似文献   

12.
In complex hydrogeological environments the effective management of groundwater quality problems by pump‐and‐treat operations can be most confidently achieved if the mixing dynamics induced within the aquifer by pumping are well understood. The utility of isotopic environmental tracers (C‐, H‐, O‐, S‐stable isotopic analyses and age indicators—14C, 3H) for this purpose is illustrated by the analysis of a pumping test in an abstraction borehole drilled into flooded, abandoned coal mineworkings at Deerplay (Lancashire, UK). Interpretation of the isotope data was undertaken conjunctively with that of major ion hydrochemistry, and interpreted in the context of the particular hydraulic setting of flooded mineworkings to identify the sources and mixing of water qualities in the groundwater system. Initial pumping showed breakdown of initial water quality stratification in the borehole, and gave evidence for distinctive isotopic signatures (δ34S(SO4) ? ?1.6‰, δ18O(SO4) ? +15‰) associated with primary oxidation of pyrite in the zone of water table fluctuation—the first time this phenomenon has been successfully characterized by these isotopes in a flooded mine system. The overall aim of the test pumping—to replace an uncontrolled outflow from a mine entrance in an inconvenient location with a pumped discharge on a site where treatment could be provided—was swiftly achieved. Environmental tracing data illustrated the benefits of pumping as little as possible to attain this aim, as higher rates of pumping induced in‐mixing of poorer quality waters from more distant old workings, and/or renewed pyrite oxidation in the shallow subsurface.  相似文献   

13.
Summary

Evaporation comparisons for Symon's evaporation tanks (6 feet square and 24 inches deep, sunk into the ground) and American A-type tanks as determined at 34 stations throughout South Africa are discussed.

Recently a series of observations to investigate relationships between evaporation from Symon's tanks and that from large water surfaces in South Africa were carried out. The latter varied from 40 acres to 3,200 acres in size, with depths from a few inches to 131 feet. The techniques used in measurement are briefly described and results of the determinations presented.  相似文献   

14.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

15.
A large‐scale groundwater flow and transport model is developed for a deep‐seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three‐dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of 39Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two‐dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep‐seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers.  相似文献   

16.
Based on the analysis of the induced earthquakes in China and abroad, we get some ideas about earthquakes induced by pumping water out of a well or injecting water into a well. The induced earthquakes usually occur near the well, and they are generally small earthquakes. The earthquake sources are shallow, and they belong to the main shock-after shock type of earthquake or the swarm-type of earthquake. The magnitude and the quantity of the induced earthquakes obviously depend on the pressure and the quantity of water pumped or injected. These earthquakes happen as soon as pumping or injecting occurrence, or after ten or twenty days, they may occur at the time of injecting mud or injecting high pressure water when a well is being drilled, or at the time when the ground water is being normally exploited. A large quantity of hot water has been exploited since 1990 in Xi’an, and the quantity of water exploited has been increasing year by year, as a result the groundwater level has been dropping with the water pumped out and the water level is high in summer and low in winter. The earthquakes in Xi’an region belong to the solitary-type and they spread outside Xi’an city where the wells are concentrated but no earthquake happens. The seismic frequency and the energy released have no relation with the quantity of water exploitation or the water level in the well. It is considered that geothermal exploitation does not induce earthquakes in and around Xi’an because of its specially geological condition. Foundation item: Project sponsored by the Landslide Office of Shaanxi Province and Society of Disaster Reduction of Shaanxi Province.  相似文献   

17.
Traditional aquifer vulnerability techniques primarily rely on spatial property data for a region and are limited by their ability to directly or indirectly assess flow and transport processes occurring from the surface to depth within an aquifer system. The main objective of this study was to investigate groundwater vulnerability in terms of aquifer interconnectivity and flow dynamics. A combination of stable isotopes, groundwater age‐dating (radiocarbon), and geomorphic/geogenic spatial analyses was applied to a regional, highly developed coastal aquifer to explain the presence of nitrate at depth. The average δ13C value (?17.3 ± 2‰ VPDB, n = 27) is characteristic of groundwater originating from locally infiltrated precipitation through extensively cultivated soils. The average δ18O and δD values (?4.0 ± 0.1‰ VSMOW, n = 27; δD: ?19.3 ± 1‰ VSMOW, n = 27, respectively) are similar to precipitation water derived from maritime sources feeding the region's surface water and groundwater. Stable and radioactive isotopes reveal significant mixing between shallow and deep aquifers due to high velocities, hydraulic connection, and input of local recharge water to depths. Groundwater overdevelopment enhances deeper and faster modern water downward flux, amplifying aquifer vulnerability. Therefore, aquifer vulnerability is a variable, dependent on the type and degree of stress conditions experienced by a groundwater system as well as the geospatial properties at the near surface.  相似文献   

18.
Irrigation, urbanization, and drought pose challenges for the sustainable use of ground water in the central Couloir sud rifain, a major agricultural region in north-central Morocco, which includes the cities of Fès and Meknès. The central Couloir is underlain by unconfined and confined carbonate aquifers that have suffered declines in hydraulic head and reductions in spring flow in recent decades. Previous studies have surveyed ground water flow and water quality in wells and springs but have not comprehensively addressed the chemistry of the regional aquifer system. Using graphical techniques and saturation index calculations, we infer that major ion chemistry is controlled (1) in the surficial aquifer by cation exchange, calcite dissolution, mixing with deep ground water, and possibly calcite precipitation and (2) in the confined aquifer and warm springs by calcite dissolution, dolomite dissolution, mixing with water that has dissolved gypsum and halite, and calcite precipitation. Analyses of 2H and 18O indicate that shallow ground water is affected by evaporation during recharge (either of infiltrating precipitation or return flow), whereas deep ground water is sustained by meteoric recharge with little evaporation. Mechanisms of recharge and hydrochemical evolution are broadly consistent with those delineated for similar regional aquifer systems elsewhere in Morocco and in southern Spain.  相似文献   

19.
ABSTRACT

Water from the alluvium of ephemeral rivers in Zimbabwe is increasingly being used. These alluvial aquifers are recharged annually from infiltrating floodwater. Nonetheless, the size of this water resource is not without limit and an understanding of the hydrological processes of an alluvial aquifer is required for its sustainable management. This paper presents the development of a water balance model, which estimates the water level in an alluvial aquifer recharged by surface flow and rainfall, while allowing for abstraction, evaporation and other losses. The model is coupled with a watershed model, which generates inflows from upland catchment areas and tributaries. Climate, hydrological, land cover and geomorphological data were collected as inputs to both models as well as observed flow and water levels for model calibration and validation. The sand river model was found to be good at simulating the observed water level and was most sensitive to porosity and seepage.  相似文献   

20.
Abstract

The effective porosity θ e for partially penetrated aquifers was determined. The model basin sandy aquifer available in the Centre was used. The values obtained for θ e were in good agreement with the adopted values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号