首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This work investigates historical trends of meteorological drought in Taiwan by means of long-term precipitation records. Information on local climate change over the last century is also presented. Monthly and daily precipitation data for roughly 100 years, collected by 22 weather stations, were used as the study database. Meteorological droughts of different levels of severity are represented by the standardized precipitation index (SPI) at a three-monthly time scale. Additionally, change-point detection is used to identify meteorological drought trends in the SPI series. Results of the analysis indicate that the incidence of meteorological drought has decreased in northeastern Taiwan since around 1960, and increased in central and southern Taiwan. Long-term daily precipitation series show an increasing trend for dry days all over Taiwan. Finally, frequency analysis was performed to obtain further information on trends of return periods of drought characteristics.  相似文献   

2.
《水文科学杂志》2013,58(6):1121-1136
Abstract

One of the most significant anticipated consequences of global climate change is the change in frequency of hydrological extremes. Predictions of climate change impacts on the regime of hydrological extremes have traditionally been conducted by a top-down approach that involves a high degree of uncertainty associated with the temporal and spatial characteristics of general circulation model (GCM) outputs and the choice of downscaling technique. This study uses the inverse approach to model hydrological risk and vulnerability to changing climate conditions in the Seyhan River basin, Turkey. With close collaboration with the end users, the approach first identifies critical hydrological exposures that may lead to local failures in the Seyhan River basin. The Hydro-BEAM hydrological model is used to inversely transform the main hydrological exposures, such as floods and droughts, into corresponding meteorological conditions. The frequency of critical meteorological conditions is investigated under present and future climate scenarios by means of a weather generator based on the improved K-nearest neighbour algorithm. The weather generator, linked with the output of GCMs in the last step of the proposed methodology, allows for the creation of an ensemble of scenarios and easy updating when improved GCM outputs become available. Two main conclusions were drawn from the application of the inverse approach to the Seyhan River basin. First, floods of 100-, 200- and 300-year return periods under present conditions will have 102-, 293- and 1370-year return periods under the future conditions; that is, critical flood events will occur much less frequently under the changing climate conditions. Second, the drought return period will change from 5.3 years under present conditions to 2.0 years under the future conditions; that is, critical drought events will occur much more frequently under the changing climate conditions.  相似文献   

3.
Assessment of hydrological extremes in the Kamo River Basin,Japan   总被引:1,自引:1,他引:0  
A suite of extreme indices derived from daily precipitation and streamflow was analysed to assess changes in the hydrological extremes from 1951 to 2012 in the Kamo River Basin. The evaluated indices included annual maximum 1-day and 5-day precipitation (RX1day, RX5day), consecutive dry days (CDD), annual maximum 1-day and 5-day streamflow (SX1day, SX5day), and consecutive low-flow days (CDS). Sen’s slope estimator and two versions of the Mann-Kendall test were used to detect trends in the indices. Also, frequency distributions of the indices were analysed separately for two periods: 1951–1981 and 1982–2012. The results indicate that quantiles of the rainfall indices corresponding to the 100-year return period have decreased in recent years, and the streamflow indices had similar patterns. Although consecutive no rainfall days represented by 100-year CDD decreased, continuous low-flow days represented by 100-year CDS increased. This pattern change is likely associated with the increase in temperature during this period.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR E. Gargouri  相似文献   

4.
Abstract

A study of rainfall trends and temporal variations within seven sub-basins of Uganda spanning from 1940 to 2009 has been made. Rainfall climatologies are constructed from observational data, using 36 station records which reflect hydroclimatic conditions. Long-term changes in rainfall characteristics were determined by non-parametric tests (Mann-Kendall and Sen’s T tests), coefficient of variation (CV), precipitation concentration index and drought severity index. Magnitude of change was estimated by applying Sen’s estimator of slope. Decadal variability of rainfall with marked seasonal cycles is evident. Temporal variability of drought patterns is detected. Variations in annual rainfall are low with no significant trends observed in the main drainage sub-basins. Significant trends occur in October, November, December and January. A noticeable decrease in the annual total rainfall was observed mostly in northwestern and southwestern sub-basins. Rainfall trend in the second normal of June–July–August (JJA) was decreasing in all the main drainage sub-basins.

Editor Z.W. Kundzewicz; Associate editor S. Yue

Citation Nsubuga, F.W.N., Botai, O.J., Olwoch, J.M., Rautenbach, C.J.deW., Bevis, Y., and Adetunji, A.O., 2014. The nature of rainfall in the main drainage sub-basins of Uganda. Hydrological Sciences Journal, 59 (2), 278–299.  相似文献   

5.
ABSTRACT

Droughts can have serious negative impacts on the water quality needed for irrigated agriculture. The Metropolitan region of Chile is a relevant producer of high-value crops and is prone to droughts. Standardized Drought Indices were used to characterize meteorological and hydrological droughts for the period from 1985 to 2015. To understand the relationship between droughts and water quality, we evaluated the correlations between daily discharge and surface water quality observations. The threshold level method was used to compare physicochemical parameters during hydrological drought periods with the Chilean water quality thresholds for agricultural uses. A significant (p < 0.05) negative relationship between discharge and electrical conductivity and major ions was found in most of the basin. Hydrological stations located in irrigation districts exceeded the official thresholds for these parameters during hydrological drought periods seriously threatening irrigated agriculture of the region.  相似文献   

6.
ABSTRACT

The drought of the period 1970–1973 in the tropical zone of Africa is analysed by the authors only for 1972 (or 1972–1973), they give attention to the yearly depths of precipitation and the observed discharges of the main rivers. This drought covered a very wide area which stretches from the Sahara Desert to the Equatorial area and crosses all the African Continent from West to East.

Precise data are given for the yearly depths of precipitation for the most representative stations, annual volumes of flow for the main rivers, maximum values of discharge and minimum values after the flood of 1972. Generally, the analysis of precipitation data as with the analysis of discharges leads to the conclusion that the return period of this drought is not far from 50 years. Some areas have been relatively little affected because the drought there has a return period of 10 years or even a return period of 3 years; on the other hand, others have been more severely affected, for instance Senegal and Mauritania with return period of 100 years.

It appears that no influence of man could be responsible for such a drought, at least as far as precipitation and discharge are concerned. It is not the same for the economic consequences.  相似文献   

7.
Abstract

Characterization of the seasonal and inter-annual spatial and temporal variability of rainfall in a changing climate is vital to assess climate-induced changes and suggest adequate future water resources management strategies. Trends in annual, seasonal and maximum 30-day extreme rainfall over Ethiopia are investigated using 0.5° latitude?×?0.5° longitude gridded monthly precipitation data. The spatial coherence of annual rainfall among contiguous rainfall grid points is also assessed for possible spatial similarity across the country. The correlation between temporally coinciding North Atlantic Multidecadal Oscillation (AMO) index and annual rainfall variability is examined to understand the underlying coherence. In total 381 precipitation grid points covering the whole of Ethiopia with five decades (1951–2000) of precipitation data are analysed using the Mann-Kendall test and Moran spatial autocorrelation method. Summer (July–September) seasonal and annual rainfall data exhibit significant decreasing trends in northern, northwestern and western parts of the country, whereas a few grid points in eastern areas show increasing annual rainfall trends. Most other parts of the country exhibit statistically insignificant trends. Regions with high annual and seasonal rainfall distribution exhibit high temporal and spatial correlation indices. Finally, the country is sub-divided into four zones based on annual rainfall similarity. The association of the AMO index with annual rainfall is modestly good for northern and northeastern parts of the country; however, it is weak over the southern region.

Editor Z.W. Kundzewicz; Associate editor S. Uhlenbrook

Citation Wagesho, N., Goel, N.K., and Jain, M.K. 2013. Temporal and spatial variability of annual and seasonal rainfall over Ethiopia. Hydrological Sciences Journal, 58 (2), 354–373.  相似文献   

8.
Regional frequency analysis based on L-moments was applied to assess the spatial extent of meteorological droughts in tandem with their return periods in Zambia. Weather station monthly rainfall data were screened to form homogeneous sub-regions-, validated by a homogeneity criterion and fitted by a generalized extreme value distribution using goodness-of-fit test statistics. Predictor equations at regional scale for L-moment ratios and mean annual precipitation were developed to generate spatial maps of meteorological drought recurrences. The 80% of normal rainfall level and two thresholds of 60% and 70% were synonymous with moderate and severe droughts, respectively. Droughts were more severe in the south than in the north of Zambia. The return periods for severe and moderate droughts showed an overlapping pattern in their occurrence at many locations, indicating that in certain years droughts can affect the entire country. The extreme south of Zambia is the most prone to drought.  相似文献   

9.
《水文科学杂志》2013,58(6):1114-1124
Abstract

Droughts may be classified as meteorological, hydrological or agricultural. When meteorological drought appears in a region, agricultural and hydrological droughts follow. In this study, the standardized precipitation index (SPI) was applied for meteorological drought analysis at nine stations located around the Lakes District, Turkey. Analyses were performed on 3-, 6-, 9- and 12-month-long data sets. The SPI drought classifications were modelled by Adaptive Neural-Based Fuzzy Inference System (ANFIS) and Fuzzy Logic, which has the advantage that, in contrast to most of the time series modelling techniques, it does not require the model structure to be known a priori. Comparison of the observed values and the modelling results shows a better agreement with SPI-12 and ANFIS models than with fuzzy logic models.  相似文献   

10.
Abstract

The combined analysis of precipitation and water scarcity was done with the use of the Standardized Precipitation Index (SPI) and the Standardized Runoff Index (SRI), developed as a monthly, two-variable SPI-SRI indicator to identify different classes of hydrometeorological conditions. Stochastic analysis of a long-term time series (1966–2005) of monthly SPI-SRI indicator values was performed using a first-order Markov chain model. This provided characteristics of regional features of drought formation, evolution and persistence, as well as tools for statistical long-term drought hazard prediction. The study was carried out on two subbasins of the Odra River (Poland) of different orography and land use: the mountainous Nysa K?odzka basin and the lowland, agricultural Prosna basin. Classification obtained with the SPI-SRI indicator was compared with the output from the NIZOWKA model that provided identification of hydrological drought events including drought duration and deficit volume. Severe and long-duration droughts corresponded to SPI-SRI Class 3 (dry meteorological and dry hydrological), while severe but short-term droughts (lasting less than 30 days) corresponded to SPI-SRI Class 4 (wet meteorological and dry hydrological). The results confirm that, in Poland, meteorologically dry conditions often shift to hydrologically dry conditions within the same month, droughts rarely last longer than 2 months and two separate drought events can be observed within the same year.  相似文献   

11.
ABSTRACT

The estimation of drought at certain temporal and spatial scales is useful for research on climate change and global warming. Greece is often affected by droughts, which are widespread spatially and temporally due to the complex topography. Within the Greek territory, various complex microclimates are created, linked with the spatial variances in drought phenomena. In this paper an estimation of drought in the Sperchios River basin was conducted using the Aridity Index (AI). Additionally, a seasonal analysis of drought was performed. Meteorological data from the Hellenic National Meteorological Service (HNMS) were used as inputs for the AI equation. Spatial interpolation of AI for the Sperchios River basin was performed using a kriging method by the application of ArcGIS 9.3. In order to produce required input data, several models (EmPEst, RayMan) and techniques (linear regression, interpolation) were combined. Finally, the meteorological data series were randomly separated into two periods and AI was estimated for these sub-periods, in order to test the effectiveness of the drought index used. The results indicate that the conditions prevailing in the area are humid, mostly affected by increased rainfall occurring in the mountainous section of the basin. Broadly, the humid environment in the upstream of Sperchios River prevents drought occurring in the lowlands of Sperchios River valley. Nevertheless, some differentiation appeared during the summer period, to which special attention needs to be given in order to prevent drought conditions.
Editor Z. W. Kundzewicz Associate editor not assigned  相似文献   

12.
ABSTRACT

This research aims to provide a comprehensive evaluation of climate change effects on temperature, precipitation and potential evapotranspiration over the country of Iran for the time periods 2010–2039, 2040–2069 and 2070–2099, and under scenarios A2 and B2. After preparation of measured temperature and precipitation data and calculation of potential evapotranspiration for the base time period of 1960–1990 for 46 meteorological stations (with a nationwide distribution), initial zoning of these three parameters over the country was attempted. Maximum and minimum temperatures and values of precipitation were obtained from the HadCM3 model under scenarios A2 and B2 for the three time periods, and these data were downscaled. Corresponding maps were prepared for the three parameters in the three time periods, and spatial and temporal variations of these climatic parameters under scenarios A2 and B2 were extracted and interpreted. Results showed that the highest increase in temperature would occur in western parts of the country, but the highest increase of potential evapotranspiration would occur in the central region of Iran. However, precipitation would vary temporally and spatially in different parts of the country depending on the scenario used and the time period selected.
Editor Z. W. Kundzewicz; Associate editor not assigned  相似文献   

13.
《水文科学杂志》2013,58(6):1151-1164
Abstract

Terrestrial evapotranspiration (ET) plays an important role in determining water and heat balances in the water cycle between the land surface and the atmosphere. In the present research a dynamic approach is developed to simulate actual ET distribution for large-scale spatial and temporal scales based on an integration of meteorological and hydrological methods. The method developed has been used to examine the impacts of climate change, complex land cover features, and soil moisture on actual ET. The distribution characteristics of actual ET demonstrate that ET in eastern China is greater than that in western China, and that ET is greater in low-latitude regions of China than in high-latitude regions. Actual monthly and annual ET values in most regions show an increasing tendency from the year 1991 to 2000, especially in arid and semi-arid regions. The results of the present study also confirm that soil moisture is one of the critical factors that affect regional ET in China. It is demonstrated that the integrated hydrological-meteorological approach is effective for simulating actual ET on large spatial and temporal scales.  相似文献   

14.
ABSTRACT

To effectively manage hydrological drought, there is an urgent need to better understand and evaluate its human drivers. Using the “downstreamness” concept, we assess the role of a reservoir network in the emergence and evolution of droughts in a river basin in Brazil. In our case study, the downstreamness concept shows the effect of a network of reservoirs on the spatial distribution of stored surface water volumes over time. We demonstrate that, as a consequence of meteorological drought and recovery, the distribution of stored volumes became spatially skewed towards upstream locations, which affected the duration and magnitude of hydrological drought both upstream (where drought was alleviated) and downstream (where drought was aggravated). The downstreamness concept thus appears to be a useful entry point for spatiotemporally explicit assessments of hydrological drought and for determining the likelihood of progression from meteorological drought to a human-modified hydrological drought in a basin.  相似文献   

15.
《水文科学杂志》2013,58(1):189-198
Abstract

Concurrent reconstructions of October—April precipitation at Madaba and Rabba gauging sites in central Jordan back to the year 1777 using a multivariate regression model are presented. The reconstruction model was calibrated using concurrent precipitation and tree-ring data for the period 1953–1981 The regression equation is significant (p < 0.05), while reconstructions account for 53% and 48% (adjusted for lost degrees of freedom) of the total variability of the precipitation at the Madaba and Rabba sites, respectively. The validation statistic obtained indicates the existence of worthwhile information in the reconstructions. A threshold of 1 standard deviation below the mean is used to define extremely dry years. The concurrent analysis of the reconstructed precipitation at both sites indicates the occurrence of 24 regional extremely dry periods of between 1 and 2 years' duration. Dry periods of more than 2 years' duration rarely occur. This study indicates the occurrence of noticeable extremely dry individual years: 1800, 1827, 1895 and 1933. The estimated mean recurrence times of extreme droughts are 9.3 and 51.3 years for droughts of 1-year and 2-years duration, respectively.  相似文献   

16.
长江流域历史水旱灾害分析   总被引:2,自引:1,他引:1  
黄忠恕  李春龙 《湖泊科学》2003,15(Z1):210-215
长江流域有丰富和长期的水旱灾害史料,最早的水灾和旱灾记载有2000余年的历史,经过系统整理和分析的历史水旱灾害资料有1000余年的旱涝型年表和500余年的旱涝分布图集.在以上资料基础上,对长江流域历史水旱灾害的地域分布特性和时间变化规律进行了初步分析:500余年历史水旱灾害的地域分布显示,流域水旱灾害总体特征是水灾重于旱灾,各级水旱灾害频率的地域分布极不均匀,存在着显著的灾害多发和少发地带,它们与自然地理环境、水系特征、气候条件和社会经济条件等因素有关;1000余年旱涝型年表分析表明,长江流域洪涝和干旱频次在时间上的非均匀分布并非完全随机,表现出多种时间尺度的年际变化特征,其中主要表现为约100a上下的大干湿气候期变化及40a左右的小旱涝期振动.  相似文献   

17.
Accepting the concept of standardization introduced by the standardized precipitation index, similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well‐known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multi‐scalar calculation for accurate temporal and spatial comparison of the hydro‐meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales, and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self‐calibrated PDSI at most analysed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly derived SPDI in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and an alternative for drought assessment and monitoring. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

Ten notable meteorological drought indices were compared on tracking the effect of drought on streamflow. A 730-month dataset of precipitation, temperature and evapotranspiration for 88 catchments in Oregon, USA, representing pristine conditions, was used to compute the drought indices. These indices were correlated with the monthly streamflow datasets of the minimum, maximum and mean discharge, and the discharge monthly fluctuation; it was revealed that the 3-month Z-score drought index (Z3) has the best association with the four streamflow variables. The Mann-Kendall trend detection test applied to the latter index time series mainly highlighted a downward trend in the autumn and winter drought magnitude (DM) and an upward trend in the spring and summer DM (p = 0.05). Finally, the Pettitt test indicated an abrupt decline in the annual and autumn DM, which began in 1984 and 1986, respectively.  相似文献   

19.
Abstract

Because droughts cover extensive areas, it is important to consider multisite droughts in a region. Probability distribution of joint droughts at a number of sites is derived assuming that flows are cross-correlated first-order Markov processes. A geometric distribution is found with a parameter that depends on the threshold probability, lag-one autocorrelation coefficients, and the multivariate probability of remaining below the threshold. Computation of the parameter of the geometric distribution is discussed. An expression is obtained for the return period of multisite droughts. Application of the derived expression is shown in an example.  相似文献   

20.
Abstract

Radar quantitative precipitation estimates (QPEs) were assessed using reference values established by means of a geostatistical approach. The reference values were estimated from raingauge data using the block kriging technique, and the reference meshes were selected on the basis of the kriging estimation variance. Agreement between radar QPEs and reference rain amounts was shown to increase slightly with the space–time scales. The statistical distributions of the errors were modelled conditionally with respect to several factors using the GAMLSS approach. The conditional bias of the errors presents a complex structure that depends on the space–time scales and the considered geographical sub-domains, while the standard deviation of the errors has a more homogeneous behaviour. The estimation standard deviation of the reference rainfall and the standard deviation of the errors between radar and reference rainfall were found to have the same magnitude, indicating the limitations of the available network in terms of providing accurate reference values for the spatial scales considered (5–100 km2).
Editor D. Koutsoyiannis; Guest editor R.J. Moore

Citation Delrieu, G., Bonnifait, L., Kirstetter, P.-E., and Boudevillain, B., 2013. Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrological Sciences Journal, 59 (7), 1300–1311. http://dx.doi.org/10.1080/02626667.2013.827337  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号