首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major advantage of the oxygen in phosphate isotope paleothermometry is that it is a system which records temperatures with great sensitivity while bone (and teeth) building organisms are alive, and the record is nearly perfectly preserved after death. Fish from seven water bodies of different temperatures (3–23°C) and different δ18O (values ?16 to +3) of the water were analysed. The δ18O values of the analysed PO4 vary from 6 to 25. The system passed the following tests: (a) the temperatures deduced from isotopic analyses of the sequence of fish from Lake Baikal are in good agreement with the temperatures measured in the thermally stratified lake; (b) the isotopic composition of fish bone phosphate is not influenced by the isotopic composition of the phosphate which is fed to the fish, but only by temperature and water composition.Isotopic analysis of fossil fish in combination with analysis of mammal bones should be a useful tool in deciphering continental paleoclimates.  相似文献   

2.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

3.
The stable isotopic composition of precipitation from low to mid latitudes contains information about changes of some climatic factors, such as temperature, precipitation and atmospheric circulation patterns. However, the isotopic variations in the area are very complicated because of the combined influences of these factors. Proper interpretation of the patterns of isotopic variations for palaeoclimate reconstructions in this area requires a detailed understanding of these complex stable isotope controls. The isotopic data (δ18O and δ2D) in precipitation at the International Atomic Energy Agency–World Meteorological Organization Bangkok station were collected and analysed because of the relatively long and unbroken isotopic records and the particular geographical location. The isotopic variations at Bangkok have strong seasonal patterns owing to distinct source regions in different seasons. In summer, the remote sources of water there can influence the δ18O values significantly, which is verified by the simple Rayleigh model. In winter, the mixing of isotopically distinct air masses with different origins, i.e. the continental and oceanic air masses, accounts for the isotopic variations. In the transition periods of the Asia–Australia monsoon, namely in May and October, the local vapour contribution may play a role in the isotopic ratios. On the interannual time‐scale, the influences of El Niño–southern oscillation (ENSO) and the Indian Ocean dipole (IOD) on isotopic composition are examined. The indications are that both the ENSO and IOD indices have a significant correlation with the δ18O ratios, and that the δ18O ratio in summer rains is significantly more enriched (depleted) during the warm (cold) phase of ENSO/IOD events. All the results suggest that it is useful for us in understanding the water cycling process and may be helpful in palaeoclimate reconstruction in this monsoon region. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We present a record on carbon stable isotopic composition (δ 13C), covering 75 through 10 thousands years ago (ka B.P.), from Hulu Cave, Nanjing. The overlapping d 13C profiles are very similar in pattern and range, indicating that they mainly record climatic signal. During the last glacial-interglacial transition, the >6‰ change of δ 13C values implies different contributions of C3 vs. C4 type plants in soils. On millennial scale, however, the increased calcite δ 13C during the warm Dansgaard-Oeschger (DO) events suggests a decrease of dissolved bio-genic CO2 when water flux rate through soil is large. This correlation between heavier d 13C and higher precipitation is consistent with our previous report on the samples’ stable oxygen isotope records (Wang et al., 2001). Comparison of coeval δ 13C and δ 18O of stalagmites indicates that kinetic fractionation of carbon isotope is closely related to growth rate of stalagmites. This study also shows that local vegetation changes may lag behind precipitation changes by δ700 years during the deglaciation.  相似文献   

5.
R/S analysis of the oxygen isotope curve of Pacific core V28-239 yields a fractal dimension of 1.22. This value is considered to characterize global climatic change over the last 2 million years as expressed by changing O18 ratios and confirms that climatic variations are characterized by long-term persistence. The fractal dimension of 1.22 compares favorably with the approximate fractal dimension of 1.26 for annual precipitation records for nine major cities in the United States. Although the precipitation and oxygen isotope data are measured in different physical units and recorded at different time scales, fractal analysis allows for a mathematical comparison of the two phenomena. Additionally, since the fractal dimensions of the oxygen isotope and precipitation records are similar, it is implied that such fractal dimensions are characteristic of climate change over the spectral range of 10 to 106 years. Given this temperature curves based on fractal parameters of long-term O18 data could be constructed which would allow examination of characteristics of temperature variation over tens and hundreds of years. Such studies may allow the establishment of limits on natural temperature variation and document the persistence of temperature trends through time. If these trends and limits can be resolved, long-range climatic prediction is feasible.  相似文献   

6.
A comparison of the oxygen isotope signal in deep-sea benthic foraminifera with the record of glacio-eustatic sea level for the last 160,000 years reveals that the amplitude of the benthic δ18O records predicts more continental ice volume than appears to be reflected in lowered sea level stands. These differences between the benthic δ18O ice volume estimates and radiometrically-dated records of eustatic sea level are consistent with the presence of a large floating Arctic Ocean ice mass during glacial intervals. The presence of an Arctic Ocean ice sheet during glacial intervals may account for the two climatic modes observed in oxygen isotope records which span the entire Pleistocene. The early Pleistocene (1.8 to 0.9 Myr B.P.) interval is characterized by low-amplitude, high-frequency δ18O fluctuations between glacial and interglacial periods, while the late Pleistocene (0.9 Myr B.P. to present) is characterized by large-amplitude, low-frequency δ18O changes. These two climatic modes can be explained by the initiation of earth orbital conditions favoring the co-occurrence of glacial period Arctic Ocean ice sheets and large continental ice sheets approximately 900,000 years before present.  相似文献   

7.
We present the results of a 3‐year monitoring programme of the stable isotope composition of lake water and precipitation at Taozi Lake, in the East Asian monsoon region of China. Our aims were to reveal the spatiotemporal pattern of variation of stable isotopes in a small closed‐basin lake and to quantitatively determine the impacts of precipitation and evaporation on the stable isotope composition of lake water under a humid monsoon climate. In the time domain, the stable oxygen isotopic ratio of the lake water (δ18OL) exhibited substantial seasonal and interannual variations, but the isotope variations between different precipitation events substantially exceeded seasonal and interannual variations. Compared with the stable isotopes in precipitation, δ18OL was substantially positive and dL was negative. In the space domains, the lake water was homogeneously mixed. Indicated by statistic analyses, precipitation plays a dominant role in dynamic of the lake stable isotope during precipitation events of relatively large magnitude, whereas the effect of evaporation is dominant during smaller precipitation events. Results advance our understanding of the stable isotope change rule in the process of lake water evaporation, and it is helpful to identify the climatic significance recorded in stable isotopic compositions of lake bottom sediments.  相似文献   

8.
Isotope tracers are widely used to study hydrological processes in small catchments, but their use in continental-scale hydrological modeling has been limited. This paper describes the development of an isotope-enabled global water balance and transport model (iWBM/WTM) capable of simulating key hydrological processes and associated isotopic responses at the large scale. Simulations and comparisons of isotopic signals in precipitation and river discharge from available datasets, particularly the IAEA GNIP global precipitation climatology and the USGS river isotope dataset spanning the contiguous United States, as well as selected predictions of isotopic response in yet unmonitored areas illustrate the potential for isotopes to be applied as a diagnostic tool in water cycle model development. Various realistic and synthetic forcings of the global hydrologic and isotopic signals are discussed. The test runs demonstrate that the primary control on isotope composition of river discharge is the isotope composition of precipitation, with land surface characteristics and precipitation-amount having less impact. Despite limited availability of river isotope data at present, the application of realistic climatic and isotopic inputs in the model also provides a better understanding of the global distribution of isotopic variations in evapotranspiration and runoff, and reveals a plausible approach for constraining the partitioning of surface and subsurface runoff and the size and variability of the effective groundwater pool at the macro-scale.  相似文献   

9.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

10.

Sampling was carried out at Baishui No. 1, the largest glacier on Mt. Yulong, China, during the summers of 1999 and 2000, to investigate the spatial variations of oxygen isotopes in the atmosphere-glacier-river system. The results confirm that there is an inverse relation between the oxygen isotopic composition of precipitation and air temperature/precipitation amount. This suggests that a strong “precipitation amount effect” exists in this typical monsoon temperate-glacier region. There are marked differences of the δ18O values of winter-accumulated snow, glacial meltwater, summer precipitation and the glacier-fed river water. Spatial and temporal variations of isotopic composition are controlled by climatic conditions. Isotopic fractionation and differentiation occur during phase changes, snow-to-ice and ice-to-meltwater transformations, and runoff processes. Variations of stable isotopes in glacier runoff can indicate variations of sources of supply, as well as different discharge-related processes. Ionic changes occur as a result of meltwater contact with glacier bed materials.

  相似文献   

11.
We examine how the stable isotope composition of meteoric water is transmitted through soil and epikarst to dripwaters in a cave in western Romania. δ2H and δ18O in precipitation at this site are influenced by temperature and moisture sources (Atlantic and Mediterranean), with lower δ18O in winter and higher in summer. The stable isotope composition of cave dripwaters mimics this seasonal pattern of low and high δ18O, but the onset and end of freezing conditions in the winter season are marked by sharp transitions in the isotopic signature of cave dripwaters of approximately 1 ‰. We interpret these shifts as the result of kinetic isotopic fractionation during the transition phase from water to ice at the onset of freezing conditions and the input of meltwater to the cave at the beginning of the spring season. This process is captured in dripwaters and therefore speleothems from Ur?ilor Cave, which grew under such dripping points, may have the potential to record past changes in the severity of winters. Similar isotopic changes in dripwaters driven by freeze–thaw processes can affect other caves in areas with winter snow cover, and cave monitoring during such changes is essential in linking the isotopic variability in dripwaters and speleothems to surface climate.  相似文献   

12.
High-resolution stable oxygen isotope (δ18O on ostracod shells), XRF-scanning and bulk grain-size data obtained on a transect of 6 gravity cores from the continental slope in the northwestern Black Sea give new insight into the hydrological evolution of the Black Sea since the Last Glacial Maximum (LGM). Stable climatic conditions during the LGM were followed by a series of meltwater pulses between 18 and 15.5 kyr BP that resulted in temporary isotopic depletion of the Black Sea waters. Subsequently, steadily increasing δ18O values in all cores are mainly caused by isotopically enriched precipitation at the onset of the Allerød/Bølling warm period. A comparison of the major trends in δ18O at different water depths suggests evaporation-driven deep water formation since ∼14.5 kyr BP, while the two shallowest cores from 168 and 465 m water depth were under the influence of increased warming in the upper water column since 14.5 and 12.5 kyr BP, respectively. The core from 168 m depth seems to be additionally influenced by freshwater input of the Danube. This core provides a high-resolution record from the Younger Dryas/Allerød boundary and suggests that a NAO-like climate mode was governing the interannual variability in the run-off of the Danube, which implies that this climate mode has been a persistent climatic feature over central Europe. The inflow of saline Mediterranean waters occurs between 9 and 8 kyr BP, where a merging of all δ18O records signals an initial homogenisation of the water column.  相似文献   

13.
This work provides a comprehensive physically based framework for the interpretation of the north Australian rainfall stable isotope record (δ18O and δ2H). Until now, interpretations mainly relied on statistical relationships between rainfall amount and isotopic values on monthly timescales. Here, we use multiseason daily rainfall stable isotope and high resolution (10 min) ground‐based C‐band polarimetric radar data and show that the five weather types (monsoon regimes) that constitute the Australian wet season each have a characteristic isotope ratio. The data suggest that this is not only due to changes in regional rainfall amount during these regimes but, more importantly, is due to different rain and cloud types that are associated with the large scale circulation regimes. Negative (positive) isotope anomalies occurred when stratiform rainfall fractions were large (small) and the horizontal extent of raining areas were largest (smallest). Intense, yet isolated, convective conditions were associated with enriched isotope values whereas more depleted isotope values were observed when convection was widespread but less intense. This means that isotopic proxy records may record the frequency of which these typical wet season regimes occur. Positive anomalies in paleoclimatic records are most likely associated with periods where continental convection dominates and convection is sea‐breeze forced. Negative anomalies may be interpreted as periods when the monsoon trough is active, convection is of the oceanic type, less electric, and stratiform areas are wide spread. This connection between variability of rainfall isotope anomalies and the intrinsic properties of convection and its large‐scale environment has important implications for all fields of research that use rainfall stable isotopes.  相似文献   

14.
The stable isotope composition (18O and 2H) in the tropical precipitation collected from 18 locations throughout the Deduru Oya river basin in Sri Lanka, has been studied during August and September 2001, in order to characterize the isotopic composition of precipitation in the dry and intermediate climatic zones of Sri Lanka. The isotope compositions are described with respect to the distance from the coast and the altitude. The analyses show that δ18O vary from ? 5·11 to 1·39‰ and δD vary from ? 35·71 to 12·55‰. The d‐excess values range from ? 0·65 to 13·17 with an average value of ~7. Regression for the δ18O ? δD is y = 6·8x + 4·9 (R2 = 0·9) which is compatible with the precipitation in other tropical regions. The lower slope in the regression line and the lower d‐excess value indicate high temperature events which were possibly aided by concentration through successive evaporation within the atmosphere. The spatial variation of isotope composition indicates two different cloud contributions for the rain events, of which one may be linked to the Indian Ocean contribution and the other to the high altitude condensation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
《地震地质》1997,19(1):78
首次提出用石笋中稳定同位素记录重建由降雨量和降水气团同位素组成所反映的古气候历史,从而为研究高分辨率的古季风气候信息开辟了新的途径。利用Hendy准则、洞穴温度、研究区水系的δ18OH2O值以及温度公式,证实了同位素分析结果的可靠性,CaCO3-H2O之间存在同位素平衡分馏。对采自石花洞的石笋样品进行了分辨率约为25a的δ18O和δ13C的分析测量,从而得到3000a以来,北京地区古气候和古环境的变化信息  相似文献   

16.
The local meteoric water line (LMWL), the functional relationship between locally measured values of δ18O and δ2H in precipitation, represents the isotopic composition of water entering hydrologic systems. The degree to which the LMWL departs from the global meteoric water line (GMWL), moreover, can reveal important information about meteoric sources of water (e.g. oceanic or terrestrial) and atmospheric conditions during transport. Here we characterize the isotopic composition of precipitation within an experimental watershed in the Western US that is subject to large topographic and seasonal gradients in precipitation. Interpreting the hydrometeorologic and spatial controls on precipitation, we constructed a seasonally weighted LMWL for southwestern Idaho that is expressed by the equation δ2H = 7.40 × δ18O ? 2.17. A seasonally weighted LMWL that is based on weighting isotopic concentrations by climatic precipitation volumes is novel, and we argue better represents the significant seasonality of precipitation in the region. The developed LMWL is considerably influenced by the semiarid climate experienced in southwest Idaho, yielding a slope and y‐intercept lower than the GMWL (δ2H = 8 × δ18O + 10). Moderate to strong correlations exist between the isotopic composition of precipitation from individual events and surface meteorologic variables, specifically surface air temperature, relative humidity, and precipitation amount. A strong negative correlation exists between the annual average isotopic composition of precipitation and elevation at individual collection sites, with a lapse rate of ?0.22‰/100 m. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The characteristics of the groundwater cycle were researched using stable isotope technology in western Sri Lanka where climatic conditions change greatly within a relatively short distance. The effects of local climate, surface water and topography on the groundwater cycle in the study area with similar geological conditions were investigated. Sri Lanka can be divided spatially into a dry zone, an intermediate zone and a wet zone, and also temporally into the rainy season and the dry season. The zonal characteristics of the groundwater cycle were also elucidated using stable isotopic technology. As an input δ diagram of precipitation in the study area, there are obvious seasonal changes in the isotopic composition and a magnitude effect, both in the wet zone and dry zone. In the wet zone, the slope of the regression line between δ D and δ 18O and deuterium excess is close to 8 and 10, respectively. However, in the dry zone, the slope of the regression line between δ D and δ 18O and deuterium excess is much less than 8 and 10, respectively. In the wet zone, there is an obvious seasonal change in the isotopic composition of groundwater. The groundwater was recharged by precipitation during the whole year. The isotopically lighter groundwater was found at the valley bottom in the rainy season there. Under the very heavy precipitation conditions, the slope of the regression line between δ D and δ 18O and deuterium excess for groundwater was close to 8 and 10, respectively. In other cases, the slopes of the regression lines are less than 8. In the dry zone, the groundwater was recharged by precipitation only in the rainy season. The isotopically lighter groundwater was found on the ridge of the valley in the rainy season. The slope of the regression line between δ D and δ 18O and deuterium excess for groundwater was much less than 8 and 10, respectively. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
D/H ratios of fluid inclusion waters extracted from230Th/234U-dated speleothems that were originally deposited under conditions of isotopic equilibrium should provide a direct estimate of the hydrogen isotopic composition of ancient meteoric waters. We present here D/H ratios for 47 fluid inclusion samples from thirteen speleothems deposited over the past 250,000 years at cave sites in Iowa, West Virginia, Kentucky and Missouri. At each site glacial-age waters are depleted in deuterium relative to those of interglacial age. The average interglacial/glacial shift in the hydrogen isotopic composition of meteoric precipitation over ice-free areas of east-central North America is estimated to be ?12‰. This shift is consistent with the present climatic models and can be explained in terms of the prevailing pattern of atmospheric circulation and an increased ocean-continent temperature gradient during glacial times which more than compensated for the increase in deuterium content of the world ocean.  相似文献   

19.
A record of changes in Nd and Sr isotopic composition of the eolian deposits from the central Loess Plateau has been determined for the past 8 Ma. The isotopic records of the silicate fraction of the Quaternary and Tertiary eolian deposits allow interpreting the interplay between the Sr isotopic variations in the eolian deposits and the late Cenozoic tectonic and climatic changes. The results indicate that the temporal variations of Nd and Sr isotopes show remarkable changes around the beginning of the Quaternary. The lower values of the 143Nd/144Nd and the decreasing trend of the 87Sr/86Sr ratios after 2.58 Ma ago are attributed to the additions of relatively younger crust materials in response to the climatic cooling and the late Cenozoic uplift induced glacial grinding in the high orogenic belts in central Asia. In this context, the substantial changes in climate and tectonics have modified dust sources significantly, and the Quaternary loess forming processes are preferentially sampling relatively younger and high relief crust materials than that of the Tertiary Red Clay.  相似文献   

20.
Isotopic exchange with atmospheric vapour can strongly influence the isotopic values of evaporating surface water bodies (e.g., lakes), influencing our understanding of hydrological processes across aquatic and terrestrial environments. Rather than measure the isotopic values of the atmosphere directly, it is much more common to estimate values by assuming equilibrium with local precipitation. This assumption may introduce large errors, thereby biasing hydrological inferences and understanding. The pattern and magnitude of this error has been quantified only in a few circumstances. We compared observations of vapour and precipitation isotope values over a four-year record collected in a montane environment in the central Rocky Mountains of North America. We further investigated factors and conditions promoting disequilibrium. Scenario comparisons assessed the impact of theoretical and methodological elements on the accuracy of the equilibrium assumption. We found that the equilibrium assumption was not well supported by direct and continuous observations of vapour isotopes using tower-based laser isotope spectroscopy, particularly during the summer months. Across all scenarios, errors associated with the equilibrium assumption were high, credibly ranging from 14 to 154 ‰ for δ2H and 1.5 to 16.3 ‰ for δ18O. Environmental covariates (e.g., vapour pressure deficit, air pressure) helped explain some of the apparent disequilibrium. Although the equilibrium assumption for estimating atmospheric vapour isotope values may not be applicable in a continental montane environment, our findings highlight opportunities for using direct vapour isotope measurements to better understand vapour sources, air mass mixing, and phase changes over complex mountainous terrain, which in turn may better constrain regional- to global-scale hydrological process estimates, such as evapotranspiration rates and the water budgets of mountain lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号