首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《水文科学杂志》2013,58(4):655-664
Abstract

Palaeohydraulic modelling is presented for Athabasca Vallis, the youngest known catastrophic flood channel on Mars. This modelling incorporates three significant advantages over previous modelling of Martian channels: a step-backwater hydraulic model; more accurate topography; and improved flood height indicators. The maximum modelled palaeodischarge is between 1 × 106 and 2 × 106m3s?1 depending on the friction coefficient selected. An anomalously high palaeostage indicator suggests a region of ponded backwater in the channel in which streamlined forms were created through deposition, with the additional possibility of post-flood subsidence/lowering of the channel slope due to magma extrusion.  相似文献   

2.
Measurements made on the floors of the temporarily-drained Glenfarg and Glenquey Reservoirs indicate that sediments with wet volumes of 63.94 × 103 m3 and 12.64 × 103 m3 were deposited in 56 and 73 years respectively. These figures represent 2.5 per cent and 1.1 per cent losses of original storage capacity. When corrected for water, organic, and diatom skeleton contents, and reservoir trap efficiency inorganic sediment yields of at least 31.3 tonnes km?2 yr?1 and of 9.0 tonnes km?2 yr?1 are suggested. The difference is probably related to contrasts of land use.  相似文献   

3.
Abstract

An investigation on the groundwater potentials of the Egbe-Mopa area in central Nigeria, underlain by the Basement Complex, is presented. The investigation involved mapping of the subsurface by use of vertical electrical soundings; measurement of depth to groundwater; and evaluation of hydraulic conductivity, transmissivity and yield by means of pumping test interpretation. The results indicate subsurface units that range from three to five resistivity layers; depth to groundwater of 0–10 m; overburden thickness of 3–16 m; hydraulic conductivity of 6.2?×?10?6 to 3.4?×?10?4 m/s; transmissivity of 4.3?×?10?7 to 2?×?10?3 m2/s; and groundwater yield of 0.2–2.5 L/s. The hydraulic head assessments revealed a general northward groundwater flow direction. The study identified three aquifer potential types, of high, medium and low productivity, respectively. Based on the longitudinal conductance of the overburden units, four distinct Aquifer Protective Capacity zones were delineated, namely, poor, weak, moderate and good.

Citation Okogbue, C.O. and Omonona, O.V., 2013. Groundwater potential of Egbe-Mopa basement area, central Nigeria. Hydrological Sciences Journal, 58 (4), 826–840.  相似文献   

4.
A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m?2 (equivalent to disturbance caused by wind SE 5–7 m s?1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4 +-N were separately 1.92 × 10?3, ?1.81 × 10?4 and 5.28 × 10?4 mg m?2 s?1 (positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10?4, 1.68 × 10?4 and ?1.29 × 10?4 mg m?2 s?1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted. The result shows that the maximum lasting time for wind SE 5–7 m s?1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4 +-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L?1 separately. With stronger disturbance (bottom wave stress is 0.217 N m?2 which is equivalent to disturbance caused by wind SE 10–11 m s?1 at the same site), there has been significant increase of nutrient fluxes (1.16 × 10?2, 6.76 × 10?3, 1.14 × 10?2 and 2.14 × 10?3 mg m?2 s?1 for TN, DTN and NH4 +-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54 × 10?5 mg m?2 s?1) and SRP with flux having a small increase (measured to be 5.42 × 10?5 mg m?2 s?1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10–11 m s?1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4 +-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0.009, 0.0004 and 0.0002 mg L?1. Therefore in shallow lakes, surface disturbance can lead to significant increase of nutrient concentrations although some components in water column had negative flux with weak disturbance (e.g. TDN and SRP in this experiment). In this case, sediment looks to be a source of nutrients. These nutrients deposited in sediment can be carried or released into water with sediment resuspension or changes of environmental conditions at water-sediment interface, which can have great effects on aquatic ecosystem and is also the characteristics of shallow lakes.  相似文献   

5.
Based on high-resolution,Array for Real-time Geostrophic Oceanography(Argo)profiles and Sea Level Anomaly(SLA)data,this study statistically analyzes and compares turbulent diapycnal mixing profiles inside and outside mesoscale eddies in the Gulf Stream region.The result indicates that average diapycnal diffusivity at 300–540 m depths in anticyclonic eddies reaches4.0×10-5 m2 s-1.This is significantly higher than the 1.6×10-5 m2 s-1 outside eddies and 0.8×10-5 m2 s-1 in cyclonic eddies.Probabilities of diapycnal diffusivity greater than 10-4 m2 s-1 within anticyclonic and cyclonic eddies and outside eddies are29%,5%and 12%,respectively.However,magnitudes of average diapycnal diffusivity at 540–900 m depths in these three cases are of the same order,10-5 m2 s-1.Twenty-four of a total 38 anticyclonic eddies had enhanced mixing in the ocean interior,and 22 were observed during or shortly after strong winds.The coincidence between enhanced mixing and strong wind stress indicates that more wind-induced,near-inertial wave energy propagates downward in anticyclonic eddies.The deeper part of 12 profiles(below 540 m)in anticyclonic eddies had vertical overturns with Thorpe scale exceeding 5 m,among which three profiles had overturns reaching 20 m.Enhanced mixing may have occurred in deep layers of some profiles,although it was not evident in average conditions.  相似文献   

6.
A method of computing the vertical flux of zonal momentum (associated with equatorial waves) from the zonal and vertical components of the winds measured by the Indian MST radar at Gadanki (13.5°N, 79.2°E) is presented. The application of the method to the radar data gives flux values of 16×10−3, 8.0×10−3 and 5.5×10−3 m2 s−2 for slow Kelvin (12-day period), fast Kelvin (5.33-day period) and Rossby-gravity (RG) (3.43-day period) waves, respectively, in the upper troposphere. These flux values compare quite well with the values 4×10−3 m2 s−2 and 1×10−3 m2 s−2 obtained from radiosonde zonal wind and temperature data by Wallace and Kousky, 1968for slow Kelvin and RG waves, respectively. An estimate of the error in the fluxes gives a value of ∼ 1.2×10−3 m2 s−2.  相似文献   

7.
The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10?4 m2 s?1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s?1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10?5 m2 s?1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s?1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.  相似文献   

8.
Rill erosion is an important erosional form on agricultural soils in England, causing large losses of soil, particularly on cultivated slopes. This paper describes a rill system that developed in a small agricultural catchment in north Oxfordshire during the winter of 1992–93. The rill system comprised two components: a system of ‘feeder rills’ along the valley-side slopes, which were the result of flow concentration and erosion along wheelings, and a thalweg rill, which formed along a dry valley bottom as a result of surface runoff concentration from the feeder rills. Total volumetric soil loss from the rill system was 32·28 m3, equivalent to 3·01 m3, ha?1 for the rill catchment area, or 3·91 t ha?1. Mean discharge for the thalweg rill and feeder rills, calculated during a storm event, was 31·101s?1 and 1·171s?1, respectively. All flows were fully turbulent and supercritical. We emphasize the need for a spatially distributed approach to the study of runoff and erosion at the catchment scale.  相似文献   

9.
Oceanic tidal fluctuations which propagate long distances up coastal rivers can be exploited to constrain hydraulic properties of riverbank aquifers. These estimates, however, may be sensitive to degree of aquifer confinement and aquifer anisotropy. We analyzed the hydraulic properties of a tidally influenced aquifer along the Meghna River in Bangladesh using: (1) slug tests combined with drilling logs and surface resistivity to estimate Transmissivity (T); (2) a pumping test to estimate T and Storativity (S) and thus Aquifer Diffusivity (DPT); and (3) the observed reduction in the amplitude and velocity of a tidal pulse to calculate D using the Jacob‐Ferris analytical solution. Average Hydraulic Conductivity (K) and T estimated with slug tests and borehole lithology were 27.3 m/d and 564 m2/d, respectively. Values of T and S determined from the pumping test ranged from 400 to 500 m2/d and 1 to 5 × 10?4, respectively with DPT ranging from 9 to 40 × 105 m2/d. In contrast, D estimated from the Jacob‐Ferris model ranged from 0.5 to 9 × 104 m2/d. We hypothesized this error resulted from deviations of the real aquifer conditions from those assumed by the Jacob‐Ferris model. Using a 2D numerical model tidal pulses were simulated across a range of conditions and D was calculated with the Jacob‐Ferris model. Moderately confined (Ktop/Kaquifer < 0.01) or anisotropic aquifers (Kx/Kz > 10) yield D within a factor of 2 of the actual value. The order of magnitude difference in D between pumping test and Jacob‐Ferris model at our site argues for little confinement or anisotropy.  相似文献   

10.
After its formation, a rill may remain in the field for months, often receiving lower flow rates than the formative discharge. The objective of this work was to evaluate the rill flow transport capacity of soil aggregates at discharges unable to erode the rill, and to analyse the influence of the rill macro‐roughness on this transport process. A non‐erodible rill was built in which roughness was reproduced in detail. In order to assess only the rill macro‐roughness, a flat channel with a similar micro‐roughness to that in the rill replica was built. Rill and channel experiments were carried out at a slope of 8 and at six discharges (8·3 × 10?5 to 5·2 × 10?4 m3 s?1) in the rill, and eight discharges (1·6 × 10?5 to 5·2 × 10?4 m3 s?1) in the channel. Non‐erodible aggregates of three sizes (1–2, 3–5 and 5–10 mm) were released at the inlet of the rill/channel. The number of aggregates received at the outlet was registered. The number and position of the remaining aggregates along the rill/channel were also determined. The rill flow was a major sediment transport mechanism only during the formation of the rill, as during that period the power of the flow was great enough to overcome the influence of the macro‐roughness of the rill bed. At lower discharges the transport capacity in the previously formed rill was significantly less than that in the flat channel under similar slope and discharge. This was determined to be due to local slowing of flow velocities at the exit of rill pools. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Historical records of monthly streamflow and precipitation coupled with mean, minimum, and maximum air temperatures for Washington State were used to study the variation and the trend characteristics that occurred over the last 50 years (1952–2002). Results indicate that the 1967 statewide water resource assessment needs to be updated because all of the stations used in that study exhibited a decreasing trend in annual streamflow ranging from ?0·9% to ?49·3%, with an arithmetic mean of ?11·7% and a median value of ?9·8%. Furthermore, a slightly decreasing trend in annual streamflow, although not statistically significant, was detected. The decreasing streamflow magnitude was about ?1·178 mm year?2, or 4·88 m3 s?1 year?1, which caused a decrease in annual streamflow in the state of about 58·9 mm, or 244 m3 s?1. This magnitude was about 9·6% of the average annual streamflow for the entire state from 1952 to 2002. Contrastingly, the overall annual precipitation in the entire state increased 1·375 mm year?2. Overall the annual means of daily mean, maximum, and minimum temperature increased by 0·122, 0·048, and 0·185 °C/10 years, respectively, during the study period. Thus the corresponding annual means of daily mean, maximum, and minimum temperatures increased by 0·61, 0·24, and 0·93 °C, respectively. All of these trends and magnitudes were found to vary considerably from station to station and month to month. The possible reasons resulting in these detected trends include, but are not limited to, human activities, climate variability and changes, and land use and land cover changes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This study illustrates the degradation of an azo dye, Reactive Yellow 81 (RY81), by the combined irradiation of UV‐C and ultrasound in the presence of homogeneous (Fe2+) and heterogeneous (TiO2, ZnO) catalysts. The efficiency of homogeneous and heterogeneous oxidation systems was evaluated in regard of the decolorization and mineralization of RY81. Decolorization followed pseudo‐first‐order kinetics with homogeneous and heterogeneous catalysts. Complete color removal was accomplished by homogeneous sonocatalytic and sonophotocatalytic oxidation processes with apparent rate constants of 0.96 × 10?3 and 46.77 × 10?3 s?1, respectively, in the presence of Fe2+. However, partial color removal was obtained by heterogeneous sonocatalytic, photocatalytic, and sonophotocatalytic oxidation processes with apparent rate constants of 2.32 × 10?3, 3.60 × 10?3, and 3.67 × 10?3 s?1, respectively, in the presence of ZnO. TiO2 had the worst catalytic effect of all of the oxidation processes. The addition of hydrogen peroxide increased the rate constants of the heterogeneous oxidation processes and decreased the rate constants of the homogeneous oxidation processes. RY81 mineralization was 62.8% for the US/UV/Fe2+ homogeneous oxidation process, which was the best oxidation process, whereas it was 43.5% for the US/UV/ZnO/H2O2 heterogeneous oxidation process within 2 h reaction time.  相似文献   

13.
The Starunia oil-ozokerite deposit occurs in the Boryslav-Pokuttya Unit of the Carpathian Foredeep, which is the main oil- and gas-bearing part of the Ukrainian Carpathians. Starunia is of great interest in studying the relationship between the magnetic properties of rocks, soils and hydrocarbons due to extensive surface microseeps yielding oil and gas, mineral water, and clay pulp containing hydrocarbons. We identified a local negative magnetic anomaly (30–35 nT) with a width of about 700 m within the MAG1 profile. The magnetic high is associated with the area of the largest mud volcanoes in the Starunia structure. Magnetic susceptibility of the soil was measured on a site with three distinct landscape features: a patch of forest with phaeozem and mass-specific susceptibility (χ) of 20–45 × 10?8 m3/kg for the surface topsoil; an area near the volcano and Nadia-1 well with visible hydrocarbon microseepage at the surface and the topsoil showing no visible evidence of hydrocarbon presence with χ = 20–50 × 10?8 m3/kg; and a patch of lowland with gleysols and χ = 10–20 × 10?8 m3/kg. Hydrocarbon-containing clays and soils from the alluvial sediments of the Velyky Lukavets River and bedrock clays near the Nadia-1 well demonstrated high χ values (up to 250–440 × 10?8 m3/kg).  相似文献   

14.
The 20th May 2006 lava dome collapse of the Soufrière Hills Volcano, Montserrat, had a total non-dense rock equivalent (non-DRE) collapse volume of approximately 115?×?106?m3. The majority of this volume was deposited into the ocean. The collapse was rapid, 85% of the mobilized volume being removed in just 35?min, giving peak pyroclastic flow flux of 66?×?103?m3?s?1. Channel and levee facies on the submarine flanks of the volcano and formation of a thick, steep-sided ridge, suggest that the largest and most dense blocks were transported proximally as a high concentration granular flow. Of the submerged volume, 30% was deposited from the base of this granular flow, forming a linear, high-relief ridge that extends 7?km from shore. The remaining 70% of the submerged volume comprises the finer grain sizes, which were transported at least 40?km by turbidity currents on gradients of <2°. At several localities, the May 2006 distal turbidity currents ran up 200?m of topography and eroded up to 20?cm of underlying substrate. Multiple turbidites are preserved, representing current reflection from the graben margins and deflection around topography. The high energy of the May 2006 collapse resulted in longer submarine run out than the larger (210?×?106?m3) Soufrière Hills dome collapse in July 2003.  相似文献   

15.
Calculating topographic gravitational potential (GP) is a time-consuming process in terms of efficiency. Prism, mass-point, mass-line, and tesseroid formulas are generally used to calculate the topographic GP effect. In this study, we reformulate the higher-order formula of the tesseroid by Taylor series expansion and then evaluate the fourth-order formula by numerical tests. Different simulation computations show that the fourth-order formula is reliable. Using the conventional approach in numerical calculations, the approximation errors in the areas of the north and south poles are extremely large. Thus, in this study we propose an approach combining the precise numerical formula and tesseroid formulas, which can satisfactorily solve the calculation problem when the computation point is located in the polar areas or areas very near the surface. Furthermore, we suggest a “best matching choice” of new combination approach to calculate the GP precisely by conducting various experiments. Given the computation point at different positions, we may use different strategies. In the low latitude, we use a precise numerical formula, the fourth-order tesseroid formula, the second-order tesseroid formula, and the zero-order formula, in the 1° range (from the computation point), 1° to 15° range, 15° to 40° range, and the range outside 40°, respectively. The accuracy can reach 2 × 10?5 m2 s?2. For the high latitude, we use the precise numerical formula, fourth-order tesseroid, second-order tesseroid, and zero-order tesseroid formulas in the ranges of 0° to 1°, 1° to 10°, 10° to 30°, and the zones outside 30°, respectively. However, if an accuracy level of 2 × 10?5 m2 s?2 is required, the zero-order tesseroid formulas should not be used and the second-order tesseroid formula should be used in the region outside 15° for the low latitude and in the region outside 10° for the high latitude.  相似文献   

16.
The objective of this study is to investigate the effect of rainfall intensity and slope gradient on the performance ofvetiver grass mulch (VGM) in soil and water conservation.The study involved field ...  相似文献   

17.
Information obtained from various parts of the two books on Montagne Pelée by Lacroix enables an estimate to be made of the size of l’Etang Sec summit crater, the volume of the 1902–1905 lava dome and its growth rate at various stages of development. During the week preceding the 8 May nuée ardente, dome growth was between 28 and 38 m3 s–1, leading to a volume of 17–23×106 m3 on the morning of the catastrophe. Considering that significant parts of the dome (~1/3?) were removed by the 8 and 20 May climactic eruptions, a high magmatic flux could have continued until at least 27 May, when the total remaining volume was estimated to 53×106 m3. After moderate activity in June–July (of order 10 m3 s–1), vigorous dome growth resumed dramatically, leading to the third climactic eruption of 30 August (a true calculation for this period being not feasible because of poor quality of the data). From November 1902 to July 1903 most of the effusive activity was concentrated in the great spine (erupted volume ~15×106 m3, magma flux 1.2 m3 s–1), which was eventually destroyed by collapse and minor nuées ardentes. The end of the eruption was characterized by a very low effusion rate, <1 m3 s–1 in average from August 1903 to October 1905.  相似文献   

18.
The soil in the Rif, Morocco, is at serious risk because increasing anthropogenic pressures are gradually transforming large natural areas into farmland. The distribution of magnetic minerals within the soil profile can be used to assess soil development and degradation. The soils in the study area are severely eroded because of a combination of highly erodible soils, intense rainstorms and scarce vegetation cover. To sample of representative soil profiles, lithology, slope gradient and land use were considered. The ranges of magnetic susceptibility in the soil profiles distinguished between two primary soil groups. Magnetic susceptibility varied in the soil profile and along the soil toposequence, and the variations were related to the differences in the original magnetic composition and the influence of main erosion factors. Lithology is the main factor contributing to the variation in magnetic susceptibility. The magnetic susceptibility values in soils on Tertiary marls (χ = 13·5 × 10?8 m3 kg?1) differed significantly from those on Quaternary terraces (χ = 122·1 × 10?8 m3 kg?1). Slope affected the distribution of magnetic susceptibility because of the continuous loss of topsoil in some parts of the slope and the deposition of eroded soil in others. Elimination of the natural vegetation cover and a shift to cultivated land for cereals has had a negative impact on soil development and, on similar slopes and substrates, magnetic susceptibility decreased significantly in cultivated soils. The soils on steep slopes that had natural vegetation cover retained the magnetic minerals better than did those on gentler slopes that were under cultivation. Grazing, clearing and, especially, tilling has weakened the soil and made it much more vulnerable to erosion. An analysis of the main factors causing erosion will help to promote rational use of the land and to establish conservation strategies in such fragile agroecosystems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

Mosul Dam is one of the biggest hydraulic structures in Iraq. Its storage capacity is 11.11 × 109 m3 at a maximum operation level of 330 m a.s.l. The dam became operational in 1986 and no survey has been conducted to determine its storage capacity and establish new operational curves since this date. A topographic map of scale 1:50 000 dated 1983 was converted into triangulated irregular network (TIN) format using the ArcGIS program to evaluate the operational curves. Then the reservoir was surveyed in 2011 to establish the reduction in its storage capacity and to develop new operational curves. The results indicated that the reduction in the storage capacity of the reservoir was 14.73%. This implies that the rate of sedimentation within the reservoir was 45.72 × 106 m3 year?1. These results indicate that most of the sediment was deposited within the upper zone of the reservoir where the River Tigris enters the reservoir.

Editor D. Koutsoyiannis

Citation Issa, E.I., Al-Ansari, N., and Knutsson, S., 2013. Sedimentation and new operational curves for Mosul Dam, Iraq. Hydrological Sciences Journal, 58 (7), 1456–1466.  相似文献   

20.
We have used a suite of remotely sensed data, numerical lava flow modeling, and field observations to determine quantitative characteristics of the 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galápagos Islands. Flank lava flow areas, volumes, instantaneous effusion rates, and average effusion rates were all determined for these two eruptions, for which only limited syn-eruptive field observations are available. Using data from SPOT, TOPSAR, ERS-1, and ERS-2, we determined that the 1995 Fernandina flow covers a subaerial area of 6.5×106 m2 and has a subaerial dense rock equivalent (DRE) volume of 42×106 m3. Field observations, ATSR satellite data, and the FLOWGO numerical model allow us to determine that the effusion rate declined exponentially from a high of ~60–200 m3 s-1 during the first few hours to <5 m3 s-1 prior to ceasing after 73 days, with a mean effusion rate of 4–16 m3 s-1. Integrating the ATSR-derived, exponentially declining effusion rate over the eruption duration produces a total (subaerial + submarine) DRE volume of between 27 and 100×106 m3, the range in values being due to differing assumptions about heat loss characteristics; only values in the higher part of this range are consistent with the independently derived subaerial volume. Using SPOT, TOPSAR, ERS-1, and ERS-2 data, we determine that the 1998 Cerro Azul flow is 16 km long, covers 16 km2, and has a DRE volume of 54×106 m3. FLOWGO produces at-vent velocity and effusion rate values of 11 m s-1 and ~600 m3 s-1, respectively. The velocity value agrees well with the 12 m s-1 estimated in the field. The mean effusion rate (total DRE volume/duration) was 7–47 m3 s-1. Dike dimensions, fissure lengths, and pressure gradients along the conduit based on magma chamber depth estimates of 3–5 km produce mean effusion rates for the two eruptions that range over nearly four orders of magnitude, the range being due to uncertainty in the magma viscosity, dike dimensions, and pressure gradient between magma chamber and vent. Although somewhat consistent with mean effusion rates from other techniques, their wide range makes them less useful. The exponentially declining effusion rates during both eruptions are consistent with release of elastic strain being the driving mechanism of the eruptions. Our results provide independent input parameters for previously published theoretical relationships between magma chamber pressurization and eruption rates that constrain chamber volumes and increases in volume prior to eruption, as well as time constants of exponential decay during the eruption. The results and theoretical relationships combine to indicate that at both volcanoes probably 25–30% of the volumetric increase in the magma chamber erupted as lava onto the surface. In both eruptions the lava flow volumes are less than 1% of the magma chamber volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号