首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Transmission losses from the beds of ephemeral streams are thought to be a widespread mechanism of groundwater recharge in arid and semi-arid regions and support a range of dryland hydro-ecology. Dryland areas cover ~40% of the Earth's land surface and groundwater resources are often the main source of freshwater. It is commonly assumed that where an unsaturated zone exists beneath a stream, the interaction between surface water and groundwater is unidirectional and that groundwater does not exert a significant feedback on transmission losses. To test this assumption, we conducted a series of numerical model experiments using idealised two-dimensional channel-transects to assess the sensitivity and degree of interaction between surface and groundwater for typical dryland ephemeral stream geometries, hydraulic properties and flow regimes. We broaden the use of the term ‘stream–aquifer interactions’ to refer not just to fluxes and water exchange but also to include the ways in which the stream and aquifer have a hydraulic effect on one another. Our results indicate that deep water tables, less frequent streamflow events and/or highly permeable sediments tend to result in limited bi-directional hydraulic interaction between the stream and the underlying groundwater which, in turn, results in high amounts of infiltration. With shallower initial depth to the water table, higher streamflow frequency and/or lower bed permeability, greater ‘negative’ hydraulic feedback from the groundwater occurs which in turn results in lower amounts of infiltration. Streambed losses eventually reach a constant rate as initial water table depths increase, but only at depths of 10s of metres in some of the cases studied. Our results highlight that bi-directional stream–aquifer hydraulic interactions in ephemeral streams may be more widespread than is commonly assumed. We conclude that groundwater and surface water should be considered as connected systems for water resource management unless there is clear evidence to the contrary.  相似文献   

2.
3.
《Journal of Hydrology》1999,214(1-4):91-102
The aim of the work was to quantify the role of runoff in nematode transport, compared with soil particle transport, during the rainy season in the Sudano–Sahelian area. The measurements were made at the outlet of a 58 ha watershed located in the Nioro du Rip region, south of the Senegalese peanut-growing basin. Every time the rainfall was sufficiently strong to cause a runoff, water was collected to estimate the volume of runoff, the soil particles and the nematode contents. Soils in the different agronomic areas were also collected to determine the nematode infestation. Some 6000 m3 of water run off during the rainy season, together with 18.6 t of soil and 279.5 million of nematodes, 127 million of which were major phytoparasitic species. The transport of the different species was not uniform. The first five runoff episodes supplied one-half the volume of runoff water and transported approximately half the phytoparasitic nematodes, but nearly three-quarters of the solid particles. Fifteen percent of the nematodes were transported during the intermediate stage of the rainy season, and approximately 30% during the final period, with equivalent water proportions but smaller quantities of soil. Of the 15 genera and species observed in the area, Tylenchorhynchus gladiolatus, Scutellonema cavenessi, Helicotylenchus dihystera and Gracilacus parvula represented 87% of the soil population, 61% being accounted for by the first two species. The average proportions of T. gladiolatus or G. parvula in the runoff water were greater than those in the soil, while the opposite was true for S. cavenessi, P. pseudopratensis and T. mashhoodi. H. dihystera was equally represented in both the soil and runoff water. The consequences of this “biological erosion” on the field infestation and on the cultural system based on fallowing are discussed.  相似文献   

4.
ABSTRACT

This paper analyses the composition of surface water and shallow groundwater in the Grande River basin, North-Central Chile, using this information to characterize water interactions. Chemical and isotopic data for surface water and groundwater (7 and 6 sampling locations, respectively) were obtained from three sampling campaigns performed in March–April (autumn), August–September (late winter) and December (early summer) 2012. Precipitation samples were also collected. Data was processed using spatial distribution charts, Piper and Stiff diagrams, and multivariate analysis. In general, the results for each method converge on a high degree of connectivity between surface water and shallow groundwater in the study area. Furthermore, approximately a 10% of groundwater contribution to the surface flow discharge was estimated for a particular reach. This multi-method approach was useful for the characterization of surface water–groundwater interactions in the Grande River basin, and may become a suitable and replicable scheme for studies in arid and semi-arid basins facing similar water management challenges.
Editor D. Koutsoyiannis; Associate editor B. Dewals  相似文献   

5.
Problems in hydrology and water management that involve both surface water and groundwater are best addressed with simulation models that can represent the interactions between these two flow regimes. In the current generation of coupled models, a variety of approaches is used to resolve surface–subsurface interactions and other key processes such as surface flow propagation. In this study we compare two physics-based numerical models that use a 3D Richards equation representation of subsurface flow. In one model, surface flow is represented by a fully 2D kinematic approximation to the Saint–Venant equations with a sheet flow conceptualization. In the second model, surface routing is performed via a quasi-2D diffusive formulation and surface runoff follows a rill flow conceptualization. The coupling between the land surface and the subsurface is handled via an explicit exchange term resolved by continuity principles in the first model (a fully-coupled approach) and by special treatment of atmospheric boundary conditions in the second (a sequential approach). Despite the significant differences in formulation between the two models, we found them to be in good agreement for the simulation experiments conducted. In these numerical tests, on a sloping plane and a tilted V-catchment, we examined saturation excess and infiltration excess runoff production under homogeneous and heterogeneous conditions, the dynamics of the return flow process, the differences in hydrologic response under rill flow and sheet flow parameterizations, and the effects of factors such as grid discretization, time step size, and slope angle. Low sensitivity to vertical discretization and time step size was found for the two models under saturation excess and homogeneous conditions. Larger sensitivity and differences in response were observed under infiltration excess and heterogeneous conditions, due to the different coupling approaches and spatial discretization schemes used in the two models. For these cases, the sensitivity to vertical and temporal resolution was greatest for processes such as reinfiltration and ponding, although the differences between the hydrographs of the two models decreased as mesh and step size were progressively refined. In return flow behavior, the models are in general agreement, with the largest discrepancies, during the recession phase, attributable to the different parameterizations of diffusion in the surface water propagation schemes. Our results also show that under equivalent parameterizations, the rill and sheet flow conceptualizations used in the two models produce very similar responses in terms of hydrograph shape and flow depth distribution.  相似文献   

6.
ABSTRACT

Floodplains are composed of complex depositional patterns of ancient and recent stream sediments, and research is needed to address the manner in which coarse floodplain materials affect stream–groundwater exchange patterns. Efforts to understand the heterogeneity of aquifers have utilized numerous techniques typically focused on point-scale measurements; however, in highly heterogeneous settings, the ability to model heterogeneity is dependent on the data density and spatial distribution. The objective of this research was to investigate the correlation between broad-scale methodologies for detecting heterogeneity and the observed spatial variability in stream/groundwater interactions of gravel-dominated alluvial floodplains. More specifically, this study examined the correlation between electrical resistivity (ER) and alluvial groundwater patterns during a flood event at a site on Barren Fork Creek, in the Ozark ecoregion of Oklahoma, USA, where chert gravels were common both as streambed and as floodplain material. Water table elevations from groundwater monitoring wells for a flood event on 1–5 May 2009 were compared to ER maps at various elevations. Areas with high ER matched areas with lower water table slope at the same elevation. This research demonstrated that ER approaches were capable of indicating heterogeneity in surface water–groundwater interactions, and that these heterogeneities were present even in an aquifer matrix characterized as highly conductive. Portions of gravel-dominated floodplain vadose zones characterized by high hydraulic conductivity features can result in heterogeneous flow patterns when the vadose zone of alluvial floodplains activates during storm events.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR X. Chen  相似文献   

7.
8.
The surface water and groundwater are important components of water cycle, and the interaction between surface water and groundwater is the important part in water cycle research. As the effective tracers in water cycle research, environmental isotope and hydrochemistry can reveal the interrelationships between surface water and groundwater effectively. The study area is the Huaisha River basin, which is located in Huairou district, Beijing. The field surveying and sampling for spring, river and well water were finished in 2002 and 2003. The hydrogen and oxygen isotopes and water quality were measured at the laboratory. The spatial characteristics in isotope and evolution of water quality along river lines at the different area were analyzed. The altitude effect of oxygen isotope in springs was revealed, and then using this equation, theory foundation for deducing recharge source of spring was estimated. By applying the mass balance method, the annual mean groundwater recharge rate at the catchment was estimated. Based on the groundwater recharge analysis, combining the hydrogeological condition analysis, and comparing the rainfall-runoff coefficients from the 1960s to 1990s in the Huaisha River basin and those in the Chaobai River basin, part of the runoff in the Huaisha River basin is recharged outside of this basin, in other words, this basin is an un-enclosed basin. On the basis of synthetically analyses, combining the compositions of hydrogen and oxygen isotopes and hydrochemistry, geomorphology, geology, and watershed systems characteristics, the relative contributions between surface water and groundwater flow at the different areas at the catchments were evaluated, and the interaction between surface water and groundwater was re- vealed lastly.  相似文献   

9.
An environmental concern with hydraulic fracturing for shale gas is the risk of groundwater and surface water contamination. Assessing this risk partly involves the identification and understanding of groundwater–surface water interactions because potentially contaminating fluids could move from one water body to the other along hydraulic pathways. In this study, we use water quality data from a prospective shale gas basin to determine: if surface water sampling could identify groundwater compartmentalisation by low-permeability faults; and if surface waters interact with groundwater in underlying bedrock formations, thereby indicating hydraulic pathways. Variance analysis showed that bedrock geology was a significant factor influencing surface water quality, indicating regional-scale groundwater–surface water interactions despite the presence of an overlying region-wide layer of superficial deposits averaging 30–40 m thickness. We propose that surface waters interact with a weathered bedrock layer through the complex distribution of glaciofluvial sands and gravels. Principal component analysis showed that surface water compositions were constrained within groundwater end-member compositions. Surface water quality data showed no relationship with groundwater compartmentalisation known to be caused by a major basin fault. Therefore, there was no chemical evidence to suggest that deeper groundwater in this particular area of the prospective basin was reaching the surface in response to compartmentalisation. Consequently, in this case compartmentalisation does not appear to increase the risk of fracking-related contaminants reaching surface waters, although this may differ under different hydrogeological scenarios.  相似文献   

10.
Abstract

This work makes explicit an algebraic expression giving the matrix of transient influence coefficients associated with a one-dimensional semi-confined aquifer model. The domain studied is divided into a series of connected and completely mixed compartments over which the governing equation is discretized. The discrete equations obtained are solved for the compartmental hydraulic head and used to derive the algebraic expression in question. The basic properties of the so-called algebraic influence coefficients are investigated. In particular, their consistency with the exact Green function is highlighted. Finally, the newly derived influence coefficients are applied to a simplified aquifer system in order to formulate and solve the problem of identifying illegal groundwater pumping.  相似文献   

11.
ABSTRACT

Forward–backward solute dispersion with an intermediate point source in one-dimensional semi-infinite homogeneous porous media is studied in this paper. Solute transport under sorption conditions, first-order decay and zero-order production terms are included. The first type of boundary condition is taken as a constant point source at an intermediate point from where forward and backward solute dispersion is examined. The Laplace transform method is adopted to solve the governing equation analytically. All the analytical results are obtained in graphical form to investigate the forward–backward solute transport in porous media for various hydrological input data. The graphical nature of the analytical solution is compared with numerical data taken from existing literature and similar results are obtained. Also, numerical solution of the governing equation is obtained by the Crank-Nicolson finite difference scheme and validated with the analytical solution, which demonstrates good agreement between them. Accuracy of the solution is also observed by using RMSE.  相似文献   

12.
《水文科学杂志》2013,58(3):543-555
Abstract

The contact between freshwater and seawater in coastal aquifers is studied using a relatively simple model for homogeneous aquifers. However, for real aquifers it is not so simple. The desalination plant built to supply water to the city of Almería is situated over the aquifer in the southern part of the River Andarax Delta. Its design capacity is 1100 L s?1, and it is supplied from boreholes pumping water from beneath the freshwater—seawater contact in this aquifer. Well logs kept over a period of two years have allowed us to accurately define the interface geometry of the freshwater—seawater contact. Lithological data collected from 31 boreholes have also indicated the existence of strata with low hydraulic conductivity, within others of high conductivity. During a simultaneous pumping test of six wells with 690 L s?1 total discharge, electrical conductivity measurements showed the influx of seawater 6–10 m below sea level and a drawdown of the interface in the piezometers closest to the pumping wells.  相似文献   

13.
Introduction The phenomenon of water level tide was discovered at Duchort diggings, Czech in 1879. By 1939, Theis, an America hydrogeologist, confirmed that periodical wave of the well water level is caused by the solid tide. In 1964, Melchior, a Belgium geophysist, began to make research on this phenomenon. Then Cooper (1965), Bredehoeft (1967) and WANG, et al (1988) followed. In China the study on water level tide began with 1970s, and the study on well water level phase lagging began …  相似文献   

14.
Concerns about the water–energy–food (WEF) nexus have motivated many discussions regarding new approaches for managing water, energy and food resources. Despite the progress in recent years, there remain many challenges in scientific research on the WEF nexus, while implementation as a management tool is just beginning. The scientific challenges are primarily related to data, information and knowledge gaps in our understanding of the WEF inter-linkages. Our ability to untangle the WEF nexus is also limited by the lack of systematic tools that could address all the trade-offs involved in the nexus. Future research needs to strengthen the pool of information. It is also important to develop integrated software platforms and tools for systematic analysis of the WEF nexus. The experience made in integrated water resources management in the hydrological community, especially in the framework of Panta Rhei, is particularly well suited to take a lead in these advances.  相似文献   

15.
16.
The problem of permeable reactive barrier (PRB) capture and release behavior is investigated by means of an approximate analytical approach exploring the invariance of steady-state solutions of the advection–dispersion equation to conformal mapping. PRB configurations considered are doubly-symmetric funnel-and-gate as well as less frequent drain-and-gate systems. The effect of aquifer heterogeneity on contaminant plume spreading is hereby incorporated through an effective transverse macro-dispersion coefficient, which has to be known. Results are normalized and graphically represented in terms of a relative capture efficiency M of contaminant mass or groundwater passing a control plane (transect) at a sufficient distance up-stream of a PRB as to comply with underlying assumptions. Factors of safety FS are given as the ratios of required capture width under advective–dispersive and purely advective transport for achieving equal capture efficiency M. It is found that M also applies to the release behavior down-stream of a PRB, i.e., it describes the spreading and dilution of PRB treated groundwater possibly containing incompletely remediated contamination and/or remediation reaction products. Hypothetical examples are given to demonstrate results.  相似文献   

17.
18.
The impact of fertilised cropping on nitrate-N dynamics in groundwater (GW) was assessed in a catchment from piezometers installed: (i) to different depths, (ii) in different soil types, (iii) on different positions on landscape, and (iv) compared with the Australian and New Zealand Environmental and Conservation Council guideline values provided for different aquatic ecosystems. The GW and NO(3)-N concentration dynamics were monitored in 39 piezometer wells, installed to 5-90 m depth, under fertilized sugarcane (Saccharum officinarum-S) in the Johnstone River Catchment, Australia, from 1999 January through September 2002. The median nitrate-N concentration ranged from 14 to 1511 microg L(-1), and the 80th percentile from 0 to 1341 microg L(-1). In 34 out of the 39 piezometer wells the 80th percentile or 80% of the nitrate-N values were higher than 30 microg L(-1), which is the maximum trigger value provided in the ANZECC table for sustainable health of different aquatic ecosystems. Nitrate-N concentration decreased with increasing well depth, increasing depth of water in wells, and with decreasing relief on landscape. Nitrate-N was higher in alluvial soil profiles than on those formed in-situ. Nitrate-N increased with increasing rainfall at the beginning of the rainy season, fluctuated during the peak rainy period, and then decreased when the rain ceased. The rapid decrease in GW after the rains ceased suggested potential existed for nitrate-N to be discharged as lateral-flow into streams. This may contribute towards the deterioration in the health of down-stream aquatic ecosystems.  相似文献   

19.
ABSTRACT

We thank the authors, Varis and Keskinen, and Nauditt, for their constructive contributions. We endorse their key comments, further referring to recent literature and events, including the UN 2018 High Level Political Forum on sustainable development. Here, we elaborate on the epistemological perspective of the water–energy–food nexus conceptualization, assessment, discourse and operationalization.  相似文献   

20.
The global warming has obviously been causingthe Arctic sea ice shrinking and thinning during thelast 30 years, which would increase free ice waters andenhance biological productivity. These changes willimpact the source and sink of carbon in the ArcticOcean and subarctic waters as well as a feedback tothe global change[1—3]. The Chukchi Sea is located in the southwest ofthe western Arctic Ocean and the Bering Sea in thenorthwest of the North Pacific Ocean. Both seas are 1997—2001) and…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号