首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《水文科学杂志》2012,57(1):71-86
ABSTRACT

Climate variability and human activities are considered to be the most likely reasons for negative trends in river inflow and the water level of some lakes and wetlands in the world. To quantify the uncertain impacts of climate variations and anthropogenic activities on Ajichay River flow in Iran, a multi-model ensemble approach based on the Bayesian model averaging (BMA) method is applied. Several statistical and simulation-based methods are used to distinguish the impacts of climatic and anthropogenic factors on river flow. The results show that almost all the methods identified human activities as the dominant impact on streamflow (about 73–85% of the change). The between-model and within-model uncertainty analyses using BMA showed that the 95% uncertainty intervals of the individual approaches have relatively large deviation ranges. The BMA mean prediction could reduce the range of between-model uncertainties to 14–27% for climate impacts and 74–80% for human impacts. This approach provides a way to better understand the contributions of climatic and anthropogenic impacts on river flow change.  相似文献   

2.
Operational flood forecasting requires accurate forecasts with a suitable lead time, in order to be able to issue appropriate warnings and take appropriate emergency actions. Recent improvements in both flood plain characterization and computational capabilities have made the use of distributed flood inundation models more common. However, problems remain with the application of such models. There are still uncertainties associated with the identifiability of parameters; with the computational burden of calculating distributed estimates of predictive uncertainty; and with the adaptive use of such models for operational, real-time flood inundation forecasting. Moreover, the application of distributed models is complex, costly and requires high degrees of skill. This paper presents an alternative to distributed inundation models for real-time flood forecasting that provides fast and accurate, medium to short-term forecasts. The Data Based Mechanistic (DBM) methodology exploits a State Dependent Parameter (SDP) modelling approach to derive a nonlinear dependence between the water levels measured at gauging stations along the river. The transformation of water levels depends on the relative geometry of the channel cross-sections, without the need to apply rating curve transformations to the discharge. The relationship obtained is used to transform water levels as an input to a linear, on-line, real-time and adaptive stochastic DBM model. The approach provides an estimate of the prediction uncertainties, including allowing for heterescadasticity of the multi-step-ahead forecasting errors. The approach is illustrated using an 80 km reach of the River Severn, in the UK.  相似文献   

3.
Abstract

A wavelet-neural network (WNN) hybrid modelling approach for monthly river flow estimation and prediction is developed. This approach integrates discrete wavelet multi-resolution decomposition and a back-propagation (BP) feed-forward multilayer perceptron (FFML) artificial neural network (ANN). The Levenberg-Marquardt (LM) algorithm and the Bayesian regularization (BR) algorithm were employed to perform the network modelling. Monthly flow data from three gauges in the Weihe River in China were used for network training and testing for 48-month-ahead prediction. The comparison of results of the WNN hybrid model with those of the single ANN model show that the former is able to significantly increase the prediction accuracy.

Editor D. Koutsoyiannis; Associate editor H. Aksoy

Citation Wei, S., Yang, H., Song, J.X., Abbaspour, K., and Xu, Z.X., 2013. A wavelet-neural network hybrid modelling approach for estimating and predicting river monthly flows. Hydrological Sciences Journal, 58 (2), 374–389.  相似文献   

4.
A hybrid neural network model for typhoon-rainfall forecasting   总被引:2,自引:0,他引:2  
A hybrid neural network model is proposed in this paper to forecast the typhoon rainfall. Two different types of artificial neural networks, the self-organizing map (SOM) and the multilayer perceptron network (MLPN), are combined to develop the proposed model. In the proposed model, a data analysis technique is developed based on the SOM, which can perform cluster analysis and discrimination analysis in one step. The MLPN is used as the nonlinear regression technique to construct the relationship between the input and output data. First, the input data are analyzed using a SOM-based data analysis technique. Through the SOM-based data analysis technique, input data with different properties are first divided into distinct clusters, which can help the multivariate nonlinear regression of each cluster. Additionally, the topological relationships among data are discovered from which more insight into the typhoon-rainfall process can be revealed. Then, for each cluster, the individual relationship between the input and output data is constructed by a specific MLPN. For evaluating the forecasting performance of the proposed model, an application is conducted. The proposed model is applied to the Tanshui River Basin to forecast the typhoon rainfall. The results show that the proposed model can forecast more precisely than the model developed by the conventional neural network approach.  相似文献   

5.
6.
7.
Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation,critical parts of a structure are physically tested,while the remaining portions of the system are concurrently simulated computationally,typically using a finite element model. This combination is realized through a numerical time-integration scheme,which allows for investigation of full system-level responses of a structure in a cost-effective manner. However,conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example,the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules(e.g.,loading controllers,data acquisition systems,simulation coordinator). These problems can cause the simulation to stop suddenly,and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity largescale hybrid simulation. In this approach,a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing,mature hybrid simulation framework,which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation(MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation(NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example,in which three piers are experimentally controlled in a total of 18 degrees of freedom(DOFs). This simulation illustrates the effectiveness of the phased approach presented in this paper.  相似文献   

8.
Hybrid simulation has been shown to be a cost-effective approach for assessing the seismic performance of structures. In hybrid simulation, critical parts of a structure are physically tested, while the remaining portions of the system are concurrently simulated computationally, typically using a finite element model. This combination is realized through a numerical time-integration scheme, which allows for investigation of full system-level responses of a structure in a cost-effective manner. However, conducting hybrid simulation of complex structures within large-scale testing facilities presents significant challenges. For example, the chosen modeling scheme may create numerical inaccuracies or even result in unstable simulations; the displacement and force capacity of the experimental system can be exceeded; and a hybrid test may be terminated due to poor communication between modules (e.g., loading controllers, data acquisition systems, simulation coordinator). These problems can cause the simulation to stop suddenly, and in some cases can even result in damage to the experimental specimens; the end result can be failure of the entire experiment. This study proposes a phased approach to hybrid simulation that can validate all of the hybrid simulation components and ensure the integrity large-scale hybrid simulation. In this approach, a series of hybrid simulations employing numerical components and small-scale experimental components are examined to establish this preparedness for the large-scale experiment. This validation program is incorporated into an existing, mature hybrid simulation framework, which is currently utilized in the Multi-Axial Full-Scale Sub-Structuring Testing and Simulation (MUST-SIM) facility of the George E. Brown Network for Earthquake Engineering Simulation (NEES) equipment site at the University of Illinois at Urbana-Champaign. A hybrid simulation of a four-span curved bridge is presented as an example, in which three piers are experimentally controlled in a total of 18 degrees of freedom (DOFs). This simulation illustrates the effectiveness of the phased approach presented in this paper.  相似文献   

9.
Coupled atmosphere–ocean general circulation models are key tools to investigate climate dynamics and the climatic response to external forcings, to predict climate evolution and to generate future climate projections. Current general circulation models are, however, undisputedly affected by substantial systematic errors in their outputs compared to observations. The assessment of these so-called biases, both individually and collectively, is crucial for the models’ evaluation prior to their predictive use. We present a Bayesian hierarchical model for a unified assessment of spatially referenced climate model biases in a multi-model framework. A key feature of our approach is that the model quantifies an overall common bias that is obtained by synthesizing bias across the different climate models in the ensemble, further determining the contribution of each model to the overall bias. Moreover, we determine model-specific individual bias components by characterizing them as non-stationary spatial fields. The approach is illustrated based on the case of near-surface air temperature bias in the tropical Atlantic and bordering regions from a multi-model ensemble of historical simulations from the fifth phase of the Coupled Model Intercomparison Project. The results demonstrate the improved quantification of the bias and interpretative advantages allowed by the posterior distributions derived from the proposed Bayesian hierarchical framework, whose generality favors its broader application within climate model assessment.  相似文献   

10.
A model for quantitatively expressing the hydrological cycle in a forested mountain catchment is proposed as a HYCYMODEL. HYCYMODEL is able to predict both short- and long-term hydrographs because the model parameters remain independent of time. It shows a good applicability for ten years of continuous data at both hourly and daily intervals for the Kiryu catchment—a forested mountain basin. Since HYCYMODEL does not need hydrograph separation between storm flow and base flow, it is a particularly attractive model.  相似文献   

11.
ABSTRACT

This study focused on the performance of the rotated general regression neural network (RGRNN), as an enhancement of the general regression neural network (GRNN), in monthly-mean river flow forecasting. The study of forecasting of monthly mean river flows in Heihe River, China, was divided into two steps: first, the performance of the RGRNN model was compared with the GRNN model, the feed-forward error back-propagation (FFBP) model and the soil moisture accounting and routing (SMAR) model in their initial model forms; then, by incorporating the corresponding outputs of the SMAR model as an extra input, the combined RGRNN model was compared with the combined FFBP and combined GRNN models. In terms of model efficiency index, R2, and normalized root mean squared error, NRMSE, the performances of all three combined models were generally better than those of the four initial models, and the RGRNN model performed better than the GRNN model in both steps, while the FFBP and the SMAR were consistently the worst two models. The results indicate that the combined RGRNN model could be a useful river flow forecasting tool for the chosen arid and semi-arid region in China.
Editor D. Koutsoyiannis; Associate editor not assigned  相似文献   

12.
An integral approach to bedrock river profile analysis   总被引:5,自引:0,他引:5  
Bedrock river profiles are often interpreted with the aid of slope–area analysis, but noisy topographic data make such interpretations challenging. We present an alternative approach based on an integration of the steady‐state form of the stream power equation. The main component of this approach is a transformation of the horizontal coordinate that converts a steady‐state river profile into a straight line with a slope that is simply related to the ratio of the uplift rate to the erodibility. The transformed profiles, called chi plots, have other useful properties, including co‐linearity of steady‐state tributaries with their main stem and the ease of identifying transient erosional signals. We illustrate these applications with analyses of river profiles extracted from digital topographic datasets. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The El Ni?o and Southern Oscillation(ENSO) is the primary source of predictability for seasonal climate prediction.To improve the ENSO prediction skill, we established a multi-model ensemble(MME) prediction system, which consists of 5 dynamical coupled models with various complexities, parameterizations, resolutions, initializations and ensemble strategies, to account for the uncertainties as sufficiently as possible. Our results demonstrated the superiority of the MME over individual models, wi...  相似文献   

14.
We propose an optimized method to compute travel times for seismic inversion problems. It is a hybrid method combining several approaches to deal with travel time computation accuracy in unstructured meshes based on tetrahedral elementary cells. As in the linear travel time interpolation method, the proposed approach computes travel times using seismic ray paths. The method operates in two sequential steps: At a first stage, travel times are computed for all nodes of the mesh using a modified version of the shortest path method. The difference with the standard version is that additional secondary nodes (called tertiary nodes) are added temporarily around seismic sources in order to improve accuracy with a reasonable increase in computational cost. During the second step, the steepest travel time gradient method is used to trace back ray paths for each source–receiver pair. Travel times at each receiver are then recomputed using slowness values at the intersection points between the ray path and the traversed cells. A number of numerical tests with an array of different velocity models, mesh resolutions and mesh topologies have been carried out. These tests showed that an average relative error in the order of 0.1% can be achieved at a computational cost that is suitable for travel time inversion.  相似文献   

15.
Abstract

Accurate forecasting of streamflow is essential for the efficient operation of water resources systems. The streamflow process is complex and highly nonlinear. Therefore, researchers try to devise alterative techniques to forecast streamflow with relative ease and reasonable accuracy, although traditional deterministic and conceptual models are available. The present work uses three data-driven techniques, namely artificial neural networks (ANN), genetic programming (GP) and model trees (MT) to forecast river flow one day in advance at two stations in the Narmada catchment of India, and the results are compared. All the models performed reasonably well as far as accuracy of prediction is concerned. It was found that the ANN and MT techniques performed almost equally well, but GP performed better than both these techniques, although only marginally in terms of prediction accuracy in normal and extreme events.

Citation Londhe, S. & Charhate, S. (2010) Comparison of data-driven modelling techniques for river flow forecasting. Hydrol. Sci. J. 55(7), 1163–1174.  相似文献   

16.
During the operations of purging and disposal of sediments of a reservoir it is necessary to know the values of turbidity in the river downstream in natural condition,in the absence of dams or river training works.The paper shows that under these conditions the ratio of the average values of sediment discharge to the annual maximum value of water discharge is a function of the average annual turbidity.Turbidity can be considered as representative synthetic index of the climatic conditions,the lithological features and the land cover of the basin,and the geometric characteristics of the river network.The proposed relationship of sediment discharge as a function of water discharge were validated on the basis of data collected from different Italian regions that have very different morphological,geo-lithological and rainfall features and that are characterised by a basin area changing between a few dozen and thousands of square kilometres.The results can be considered satisfying.  相似文献   

17.
A non-linear perturbation model for river flow forecasting is developed, based on consideration of catchment wetness using an antecedent precipitation index (API). Catchment seasonality, of the form accounted for in the linear perturbation model (the LPM), and non-linear behaviour both in the runoff generation mechanism and in the flow routing processes are represented by a constrained non-linear model, the NLPM-API. A total of ten catchments, across a range of climatic conditions and catchment area magnitudes, located in China and in other countries, were selected for testing daily rainfall-runoff forecasting with this model. It was found that the NLPM-API model was significantly more efficient than the original linear perturbation model (the LPM). However, restriction of explicit non-linearity to the runoff generation process, in the simpler LMP-API form of the model, did not produce a significantly lower value of the efficiency in flood forecasting, in terms of the model efficiency index R2.  相似文献   

18.
Lake water level regimes are influenced by climate, hydrology and land use. Intensive land use has led to a decline in lake levels in many regions, with direct impacts on lake hydrology, ecology and ecosystem services. This study examined the role of climate and river flow regime in controlling lake regimes using three different lakes with different hydraulic characteristics (volume-inflow ratio, CIR). The regime changes in the lakes were determined for five different river inflows and five different climate patterns (hot-arid, tropical, moderate, cold-arid, cold-wet), giving 75 different combinations of governing factors in lake hydrology. The input data were scaled to unify them for lake comparisons. By considering the historical lake volume fluctuations, the duration (number of months) of lake volume in different ‘wetness’ regimes from ‘dry’ to ‘wet’ was used to develop a new index for lake regime characterisation, ‘Degree of Lake Wetness’ (DLW). DLW is presented as two indices: DLW1, providing a measure of lake filling percentage based on observed values and lake geometry, and DLW2, providing an index for lake regimes based on historical fluctuation patterns. These indices were used to classify lake types based on their historical time series for variable climate and river inflow. The lake response time to changes in hydrology or climate was evaluated. Both DLW1 and DLW2 were sensitive to climate and hydrological changes. The results showed that lake level in high CIR systems depends on climate, whereas in systems with low CIR it depends more on river regime.  相似文献   

19.
In this study, a stepwise cluster forecasting (SCF) framework is proposed for monthly streamflow prediction in Xiangxi River, China. The developed SCF method can capture discrete and nonlinear relationships between explanatory and response variables. Cluster trees are generated through the SCF method to reflect complex relationships between independent (i.e. explanatory) and dependent (i.e. response) variables in the hydrologic system without determining specific linear/nonlinear functions. The developed SCF method is applied for monthly streamflow prediction in Xiangxi River based on the local meteorological records as well as some climate index. Comparison among SCF, multiple linear regression, generalized regression neural network, and least square support vector machine methods would be conducted. The results indicate that the SCF method would produce good predictions in both training and testing periods. Besides, the inherent probabilistic characteristics of the SCF predictions are further analyzed. The results obtained by SCF can presented as intervals, formulated by the minimum and maximum predictions as well as the 5 and 95 % percentile values of the predictions, which can reflect the variations in streamflow forecasts. Therefore, the developed SCF method can be applied for monthly streamflow prediction in various watersheds with complicated hydrologic processes.  相似文献   

20.
Accurate simulation and prediction of the dynamic behaviour of a river discharge over any time interval is essential for good watershed management. It is difficult to capture the high‐frequency characteristics of a river discharge using traditional time series linear and nonlinear model approaches. Therefore, this study developed a wavelet‐neural network (WNN) hybrid modelling approach for the predication of river discharge using monthly time series data. A discrete wavelet multiresolution method was employed to decompose the time series data of river discharge into sub‐series with low (approximation) and high (details) frequency, and these sub‐series were then used as input data for the artificial neural network (ANN). WNN models with different wavelet decomposition levels were employed to predict river discharge 48 months ahead of time. Comparison of results from the WNN models with those of the ANN models alone indicated that WNN models performed a more accurate prediction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号