首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In determining the possible influence of climate change, it is important to understand the temporal and spatial variability in streamflow response for diverse climate zones. Thus, the aim of this study was to determine the presence of changes in annual maximum peak flow for two climate zones in Chile over the past few decades. A general analysis, a flood frequency analysis and a trend analysis were used to study such changes between 1975 and 2008 for a semi-arid (29°S–32°S) and a temperate (36°S–38°S) climatic zone. The historic annual maxima, minima and mean flows, as well as decadal mean peak flow, were compared over the period of record. The Gumbel distribution was selected to compare the 30-year flood values of two ±15-year intervals, which showed that streamflow decreased by an average of 19.5% in the semi-arid stations and increased by an average of 22.6% in the temperate stations. The Mann-Kendall test was used to investigate the temporal changes in streamflows, with negative trends being observed in 87% of the stations analysed in the semi-arid zone, and positive trends in 57% of those analysed in the temperate zone. These differences in streamflow response between climate zones could be related to recent documented increases in altitude of the zero-degree isotherm in the Andes Mountains of Chile, since most of the significant positive and negative changes were detected in first-order rivers located closer to this mountain range.

Editor D. Koutsoyiannis; Associate editor H. Lins

Citation Pizarro, R., Vera, M., Valdés, R., Helwig, B., and Olivares, C., 2013. Multi-decadal variations in annual maximum peak flows in semi-arid and temperate regions of Chile. Hydrological Sciences Journal, 59 (2), 300–311.  相似文献   

2.
Abstract

Statistically significant FAO-56 Penman-Monteith (FAO-56 PM) and adjusted Hargreaves (AHARG) reference evapotranspiration (ET0) trends at monthly, seasonal and annual time scales were analysed by using linear regression, Mann-Kendall and Spearman’s Rho tests at the 1 and 5% significance levels. Meteorological data were used from 12 meteorological stations in Serbia, which has a humid climate, for the period 1980–2010. Web-based software for conducting the trend analyses was developed. All of the trends significant at the 1 and 5% significance levels were increasing. The FAO-56 PM ET0 trends were almost similar to the AHARG trends. On the seasonal time scale, for the majority of stations significant increasing trends occurred in summer, while no significant positive or negative trends were detected by the trend tests in autumn for the AHARG series. Moreover, 70% of the stations were characterized by significant increasing trends for both annual ET0 series.

Editor Z.W. Kundzewicz; Associate editor S. Grimaldi

Citation Gocic, M. and Trajkovic, S., 2013. Analysis of trends in reference evapotranspiration data in a humid climate. Hydrological Sciences Journal, 59 (1), 165–180.  相似文献   

3.
Abstract

This study aims to assess the potential impact of climate change on flood risk for the city of Dayton, which lies at the outlet of the Upper Great Miami River Watershed, Ohio, USA. First the probability mapping method was used to downscale annual precipitation output from 14 global climate models (GCMs). We then built a statistical model based on regression and frequency analysis of random variables to simulate annual mean and peak streamflow from precipitation input. The model performed well in simulating quantile values for annual mean and peak streamflow for the 20th century. The correlation coefficients between simulated and observed quantile values for these variables exceed 0.99. Applying this model with the downscaled precipitation output from 14 GCMs, we project that the future 100-year flood for the study area is most likely to increase by 10–20%, with a mean increase of 13% from all 14 models. 79% of the models project increase in annual peak flow.

Citation Wu, S.-Y. (2010) Potential impact of climate change on flooding in the Upper Great Miami River Watershed, Ohio, USA: a simulation-based approach. Hydrol. Sci. J. 55(8), 1251–1263.  相似文献   

4.
ABSTRACT

A semi-distributed hydrological model of the Niger River above and including the Inner Delta is developed. GCM-related uncertainty in climate change impacts are investigated using seven GCMs for a 2°C increase in global mean temperature, the hypothesised threshold of “dangerous” climate change. Declines in precipitation predominate, although some GCMs project increases for some sub-catchments, whilst PET increases for all scenarios. Inter-GCM uncertainty in projected precipitation is three to five times that of PET. With the exception of one GCM (HadGEM1), which projects a very small increase (3.9%), river inflows to the Delta decline. There is considerable uncertainty in the magnitude of these reductions, ranging from 0.8% (HadCM3) to 52.7% (IPSL). Whilst flood extent for HadGEM1 increases (mean annual peak +1405 km2/+10.2%), for other GCMs it declines. These declines range from almost negligible changes to a 7903 km2 (57.3%) reduction in the mean annual peak.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   

5.
Abstract

Major floods in Europe and North America during the past decade have provoked the question of whether or not they are an effect of a changing climate. This study investigates changes in observational data, using up to 100-year-long daily mean river flow records at 21 stations worldwide. Trends in seven flood and low-flow index series are assessed using Mann-Kendall and linear regression methods. Emphasis was on the comparison of trends in these flow index series, particularly in peak-over-threshold (POT) series as opposed to annual maximum (AM) river flow series. There is a larger number of significant trends in the AM than in the POT flood magnitude series, probably relating to the way the series are constructed. Low flood peaks occurring at the beginning or end of a time series with trend may be too low to be selected for the POT analysis. However, one peak per year will always be selected for the AM series, making the slope steeper and/or the series longer, resulting in a more significant trend. There is no general pattern of increasing or decreasing numbers or magnitudes of floods, but there are significant increases in half of the low-flow series.  相似文献   

6.
In conjunction with available climate data, surface runoff is investigated at 12 gauges in the Quesnel watershed of British Columbia to develop its long‐term (1926–2004) hydroclimatology. At Quesnel itself, annual mean values of air temperature, precipitation and runoff are 4·6 °C, 517 and 648 mm, respectively. Climate data reveal increases in precipitation, no significant trend in mean annual air temperature, but an increasing trend in mean minimum temperatures that is greatest in winter. There is some evidence of decreases in winter snow depth. On the water year scale (October–September), a strong positive correlation is found between discharge and precipitation (r = 0·70, p < 0·01) and a weak negative correlation is found between precipitation and temperature (r = ? 0·36, p < 0·01). Long‐term trends using the Mann‐Kendall test indicate increasing annual discharge amounts that vary from 8 to 14% (12% for the Quesnel River, p = 0·03), and also a tendency toward an earlier spring freshet. River runoff increases at a rate of 1·26 mm yr?1 m?1 of elevation from west to east along the strong elevation gradient in the basin. Discharge, temperature and precipitation are correlated with the large‐scale climate indices of the Pacific Decadal Oscillation (PDO) and El‐Niño Southern Oscillation (ENSO). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

This paper distinguishes human and climate influences on the Columbia River streamflow disturbance regime, examines how this disturbance regime has changed over the last 150 years, and discusses downstream impacts. Flow management and withdrawal have greatly curtailed exceedence of the natural bankfull level of ~20 000 ms-1. The frequency distribution of Columbia River flow has also changed. Sediment transport is positively correlated with streamflow standard deviation, and has been greatly reduced by flow regulation. Three kinds of spring freshet style have been identified; there are also three kinds of winter freshet. Flow regulation and regional climate warming have changed freshet styles and reduced maximum flows during the spring season. Downstream effects of hydrological alterations include increased salinity intrusion length, loss of shallow water habitat area during the freshet season, increased tides throughout most of the year, and a decrease in area of the Columbia River plume during spring and summer. Although climate changes and variations have played a substantial role in changing the hydrological disturbance regime, their influence is still less than that of human manipulation of the flow cycle.

Citation Jay, D. A. & Naik, P. K. (2011) Distinguishing human and climate influences on hydrological disturbance processes in the Columbia River, USA. Hydrol. Sci. J. 56(7), 1186–1209.  相似文献   

8.
ABSTRACT

Taking a representative catchment of the Yangtze River Delta region as the study area, this research evaluated sub-daily rainstorm variability and its potential effects on flood processes based on an integrated approach of the HEC-HMS model and design storm hyetographs. The results show that the intensities of rainfall on sub-daily scale are getting more extreme. The annual maximum 1-, 2- and 3-hour rainstorms followed significant upward trends with increases of 0.32, 0.43 and 0.44 mm per year, respectively, while the annual maximum 6-, 12- and 24-h events had non-significant rising trends. The detected significant trends in short-duration rainstorms were then used to redesign storm hyetographs to drive the HEC-HMS model, the results show that these changes in short-duration rainstorm characteristics would increase the flood peak discharge and flood volume. These findings indicate that regional flood control capabilities must be improved to manage the adverse impacts of rainfall variation under changing environments.  相似文献   

9.
Abstract

The magnitudes of the largest known floods of the River Rhine in Basel since 1268 were assessed using a hydraulic model drawing on a set of pre-instrumental evidence and daily hydrological measurements from 1808. The pre-instrumental evidence, consisting of flood marks and documentary data describing extreme events with the customary reference to specific landmarks, was “calibrated” by comparing it with the instrumental series for the overlapping period between the two categories of evidence (1808–1900). Summer (JJA) floods were particularly frequent in the century between 1651–1750, when precipitation was also high. Severe winter (DJF) floods have not occurred since the late 19th century despite a significant increase in winter precipitation. Six catastrophic events involving a runoff greater than 6000 m 3 s‐1 are documented prior to 1700. They were initiated by spells of torrential rainfall of up to 72 h (1480 event) and preceded by long periods of substantial precipitation that saturated the soils, and/or by abundant snowmelt. All except two (1999 and 2007) of the 43 identified severe events (SEs: defined as having runoff > 5000 and < 6000 m 3 s ‐1) occurred prior to 1877. Not a single SE is documented from 1877 to 1998. The intermediate 121-year-long “flood disaster gap” is unique over the period since 1268. The effect of river regulations (1714 for the River Kander; 1877 for the River Aare) and the building of reservoirs in the 20th century upon peak runoff were investigated using a one-dimensional hydraulic flood-routing model. Results show that anthropogenic effects only partially account for the “flood disaster gap” suggesting that variations in climate should also be taken into account in explaining these features.

Citation Wetter, O., Pfister, C., Weingartner, R., Luterbacher, J., Reist, T., & Trösch, J. (2011) The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol. Sci. J. 56(5), 733–758.  相似文献   

10.
Abstract

In the current context of climatic variability, it is important to quantify the impact on the environment. This study deals with an analysis of climatic data and land-use changes in terms of the impacts on flood recurrence based on multisource data. The study area covers the mouth of the Saint-François River (southern Québec, Canada), where spring floods and ice jams are a recurring problem. The flood frequency analysis shows an increase in flooding over recent decades, attributable to an increase in winter temperatures that has the effect of causing ice jams earlier in the year. Regarding land-use changes, a small decrease in agricultural surface areas is observed, from 53% to 39%, along with increases in forest and urban surface areas from 27% to 38% (forest) and 3% to 5% (urban) between 1928 and 2005. In a context of continuing climate warming, more pronounced inter-annual variations are to be expected along with a higher incidence of flooding.

Editor Z.W. Kundzewicz

Citation Ouellet, C., Saint-Laurent, D. and Normand, F., 2012. Flood events and flood risk assessment in relation to climate and land-use changes: Saint-François River, southern Québec, Canada. Hydrological Sciences Journal, 57 (2), 313–325.  相似文献   

11.
Abstract

Results of a comprehensive synoptic-hydrological analysis of major flood events in the Negev (1964–2007) are presented. A low threshold for major flood data was set to be the 10-year recurrence interval of peak discharge and/or flood volume magnitude. Altogether, 75 major flood events, or 133 hydrometrically monitored floods, were extracted. These events were categorized according to synoptic oriented classes by verification of the paired databases of: (a) floods in the study area, and (b) synoptic systems over the Eastern Mediterranean. For the study area, two of the most frequent flood-generating synoptic systems are the autumn Red Sea Trough (RST), 31%, and winter cyclones, 49%. The entire RST series consists of 24 major flood events (55 floods). The synoptic definition was corroborated by analysing the specific form of flood hydrographs and the ratio of flood volume to peak discharge. Regional analysis shows increased contribution of RST events southwards from 30% to 90% with a respective decrease in the number of cyclone events. By comparing two 22-year sub-periods (1964–1985 and 1986–2007), a positive trend in the frequency and magnitudes of RST flood events is discerned. There is also an increased tendency for the occurrence of cyclone floods.

Editor Z.W. Kundzewicz

Citation Shentsis, I., Laronne J.B., and Alpert, P., 2012. Red Sea Trough flood events in the Negev, Israel (1964–2007). Hydrological Sciences Journal, 57 (1), 42–51.  相似文献   

12.
Abstract

Seasonal design floods which consider information on seasonal variation are very important for reservoir operation and management. The seasonal design flood method currently used in China is based on seasonal maximum (SM) samples and assumes that the seasonal design frequency is equal to the annual design frequency. Since the return period associated with annual maximum floods is taken as the standard in China, the current seasonal design flood cannot satisfy flood prevention standards. A new seasonal design flood method, which considers dates of flood occurrence and magnitudes of the peaks (runoff), was proposed and established based on copula function. The mixed von Mises distribution was selected as marginal distribution of flood occurrence dates. The Pearson Type III and exponential distributions were selected as the marginal distribution of flood magnitude for annual maximum flood series and peak-over-threshold samples, respectively. The proposed method was applied at the Geheyan Reservoir, China, and then compared with the currently used seasonal design flood methods. The case study results show that the proposed method can satisfy the flood prevention standard, and provide more information about the flood occurrence probabilities in each sub-season. The results of economic analysis show that the proposed design flood method can enhance the floodwater utilization rate and give economic benefits without lowering the annual flood protection standard.

Citation Chen, L., Guo, S. L., Yan, B. W., Liu, P. & Fang, B. (2010) A new seasonal design flood method based on bivariate joint distribution of flood magnitude and date of occurrence. Hydrol. Sci. J. 55(8), 1264–1280.  相似文献   

13.
Abstract

Abstract Monthly precipitation and temperature trends of 51 stations in the Yangtze basin from 1950–2002 were analysed and interpolated. The Mann-Kendall trend test was applied to examine the monthly precipitation and temperature data. Significant positive and negative trends at the 90, 95 and 99% significance levels were detected. The monthly mean temperature, precipitation, summer precipitation and monthly mean runoff at Yichang, Hankou and Datong stations were analysed. The results indicate that spatial distribution of precipitation and temperature trends is different. The middle and lower Yangtze basin is dominated by upward precipitation trend but by somewhat downward temperature trend; while downward precipitation trend and upward temperature trend occur in the upper Yangtze basin. This is because increasing precipitation leads to increasing cloud coverage and, hence, results in decreasing ground surface temperature. Average monthly precipitation and temperature analysis for the upper, middle and lower Yangtze basin, respectively, further corroborate this viewpoint. Analysis of precipitation trend for these three regions and of runoff trends for the Yichang, Hankou and Datong stations indicated that runoff trends respond well to the precipitation trends. Historical flood trend analysis also shows that floods in the middle and lower Yangtze basin are in upward trend. The above findings indicate that the middle and lower Yangtze basin is likely to face more serious flood disasters. The research results help in further understanding the influence of climatic changes on floods in the Yangtze basin, providing scientific background for the flood control activities in large catchments in Asia.  相似文献   

14.
ABSTRACT

Time series techniques were employed to determine rates of vertical crustal movement within the Great Lakes region of North America. Observations of water level elevations as recorded at gauges around the lakes, and differences in elevations between pairs of gauges were analysed for linear trends, periodicities and stochastic components. It was found that the variance of time series of elevations consisted mainly of first-order linear trends and small periodic components. Relative rates of crustal movement were computed from a linear trends analysis of elevation differences. These rates were converted to absolute rates of movement using the Nipissing zero isobase as a datum.

This study shows that, in general, the northeastern area of the Great Lakes region is rising at a rate of about 1·00 ft per 100 years relative to the southwest of the region.  相似文献   

15.
Abstract

To enable assessment of risks of water management to riparian ecosystems at a regional scale, we developed a quantile-regression model of abundance of broadleaf cottonwoods (Populus deltoides and P. fremontii) as a function of flood flow attenuation. To test whether this model was transferrable to narrowleaf cottonwood (Populus angustifolia), we measured narrowleaf abundance along 39 river reaches in northwestern Colorado, USA. The model performed well for narrowleaf in all 32 reaches where reservoir storage was <75% of mean annual flow. Field data did not fit the model at four of seven reaches where reservoir storage was >90% of mean annual flow. In these four reaches, narrowleaf was abundant despite peak flow attenuation of 45–61%. Poor model performance in these four reaches may be explained in part by a pulse of narrowleaf cottonwood expansion as a response to channel narrowing and in part by differences between narrowleaf and broadleaf cottonwood response to floods and drought.
Editor Z.W. Kundzewicz; Guest editor M. Acreman

Citation Wilding, T.K., Sanderson, J.S., Merritt, D.M., Rood, S.B., and Poff, N.L., 2014. Riparian responses to reduced flood flows: comparing and contrasting narrowleaf and broadleaf cottonwoods. Hydrological Sciences Journal, 59 (3–4), 605–617.  相似文献   

16.
ABSTRACT

Ten notable meteorological drought indices were compared on tracking the effect of drought on streamflow. A 730-month dataset of precipitation, temperature and evapotranspiration for 88 catchments in Oregon, USA, representing pristine conditions, was used to compute the drought indices. These indices were correlated with the monthly streamflow datasets of the minimum, maximum and mean discharge, and the discharge monthly fluctuation; it was revealed that the 3-month Z-score drought index (Z3) has the best association with the four streamflow variables. The Mann-Kendall trend detection test applied to the latter index time series mainly highlighted a downward trend in the autumn and winter drought magnitude (DM) and an upward trend in the spring and summer DM (p = 0.05). Finally, the Pettitt test indicated an abrupt decline in the annual and autumn DM, which began in 1984 and 1986, respectively.  相似文献   

17.
ABSTRACT

The objective of this study was to evaluate: (i) the influence of slope position and land use on plot-scale runoff, and (ii) the ability of the curve number (CN) approach to estimate the measured runoff using microplots (1 m × 1 m) spaced 0.5 m apart. The study considered two slope positions: upslope (5.8%), and downslope (2.3%), and two land-use types: tilled maize-beans (TMB) intercrop and fallow shrub-grassland (FSG). Runoff was measured from September to November 2014 and from July to October 2015. The rainfall–runoff events in 2014 and 2015 were subjected to statistical analysis. The CN was computed with rainfall–runoff data. The results showed a significant (p < 0.05) effect of land use on surface runoff in 2015. Neither the slope position nor its interaction with land use had a significant (p < 0.05) effect on surface runoff. The runoff estimation captured the dynamics of runoff with better estimation observed under the TMB plot compared to the FSG.  相似文献   

18.
Abstract

This paper introduces a reference hydrometric network for Ireland and examines the derived flow archive for evidence of climate-driven trends in mean and high river flows. The Mann-Kendall and Theil-Sen tests are applied to eight hydroclimatic indicators for fixed and variable (start and end date) records. Spatial coherence and similarities of trends with rainfall suggest they are climate driven; however, large temporal variability makes it difficult to discern widely-expected anthropogenic climate change signals at this point in time. Trends in summer mean flows and recent winter means are at odds with those expected for anthropogenic climate change. High-flow indicators show strong and persistent positive trends, are less affected by variability and may provide earlier climate change signals than mean flows. The results highlight the caution required in using fixed periods of record for trend analysis, recognizing the trade-off between record length, network density and geographic coverage.

Editor Z.W. Kundzewicz; Associate editor H. Lins

Citation Murphy, C., Harrigan, S., Hall, J., and Wilby, R.L., 2013. Climate-driven trends in mean and high flows from a network of reference stations in Ireland. Hydrological Sciences Journal, 58 (4), 755–772.  相似文献   

19.
ABSTRACT

In many places, magnitudes and frequencies of floods are expected to increase due to climate change. To understand these changes better, trend analyses of historical data are helpful. However, traditional trend analyses do not address issues related to shifts in the relative contributions of rainfall versus snowmelt floods, or in the frequency of a particular flood type. We present a novel approach for quantifying such trends in time series of floods using a fuzzy decision tree for event classification and applied it to maximal annual and seasonal floods in 27 alpine catchments for the period 1980–2014. Trends in flood types were studied with Sen’s slope and double mass curves. Our results reveal a decreasing number of rain-on-snow and an increasing number of short rainfall events in all catchments, with flash floods increasing in smaller catchments. Overall, the results demonstrate the value of incorporating a fuzzy flood-type classification into flood trend analyses.  相似文献   

20.
ABSTRACT

Downscaling of climate projections is the most adapted method to assess the impacts of climate change at regional and local scales. This study utilized both spatial and temporal downscaling approaches to develop intensity–duration–frequency (IDF) relations for sub-daily rainfall extremes in the Perth airport area. A multiple regression-based statistical downscaling model tool was used for spatial downscaling of daily rainfall using general circulation models (GCMs) (Hadley Centre’s GCM and Canadian Global Climate Model) climate variables. A simple scaling regime was identified for 30 minutes to 24 hours duration of observed annual maximum (AM) rainfall. Then, statistical properties of sub-daily AM rainfall were estimated by scaling an invariant model based on the generalized extreme value distribution. RMSE, Nash-Sutcliffe efficiency coefficient and percentage bias values were estimated to check the accuracy of downscaled sub-daily rainfall. This proved the capability of the proposed approach in developing a linkage between large-scale GCM daily variables and extreme sub-daily rainfall events at a given location. Finally IDF curves were developed for future periods, which show similar extreme rainfall decreasing trends for the 2020s, 2050s and 2080s for both GCMs.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号