首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This study was carried out in the framework of the Surface Water and Ocean Topography (SWOT) programme of the French National Centre of Space Studies (CNES). Based on discharge measurements and Gravity Recovery and Climate Experiment (GRACE) determination of total water storage (TWS), we have investigated the hydrological variability of the main French drainage basins (Seine, Loire, Garonne and Rhône) using a wavelet approach (continuous wavelet analyses and wavelet coherence analyses). The results of this analysis have shown a coherence ranging between 82% and 90% for TWS and discharge, thus demonstrating the potential use of TWS for characterization of the hydrological variability of French rivers. Strong coherence between the four basin discharges (between 73% and 92%) and between their associated TWS data (from 82% to 98%) suggested a common external influence on hydrological variability. To determine this influence, we investigated the relationship between hydrological variability and the North Atlantic Oscillation (NAO), considered as an index of prevailing climate in Europe. Basin discharges show strong coherence with NAO, ranging between 64% and 72% over the period 1959–2010. The coherence between NAO and TWS was 62% to 67% for 2003–2009. This is similar to the coherence between NAO and basin discharges detected for the same period. According to these results, strong influence of the NAO was clearly observed on the TWS and discharges of the major French river basins.
Editor Z.W. Kundzewicz  相似文献   

2.
《水文科学杂志》2012,57(1):57-70
ABSTRACT

Leading patterns of observed seasonal extreme and mean streamflow on the Korean peninsula were estimated using an empirical orthogonal teleconnection (EOT) technique. In addition, statistical correlations on a seasonal basis were calculated using correlation and regression analyses between the leading streamflow patterns and various climate indices based on atmospheric–ocean circulation. The spatio-temporal patterns of the leading EOT modes for extreme and mean streamflow indicate an upstream mode for the Han River, with increasing trends in summer, and a downstream mode for the Nakdong River, with oscillations mainly on inter-decadal time scales in winter. The tropical ENSO (El Niño Southern Oscillation) forcing for both extreme and mean streamflow is coherently associated with summer to winter streamflow patterns. The western North Pacific monsoon has a negative correlation with winter streamflow variability, and tropical cyclone indices also exhibit significant positive correlation with autumn streamflow. Leading patterns of autumn and winter streamflow time series show predictability up to two seasons in advance from the Pacific sea-surface temperatures.  相似文献   

3.
There is some evidence of rapid changes in the global atmosphere and hydrological cycle caused by the influence of climate variability. In West Africa, such changes impact directly on water resources leading to incessant extreme hydro‐meteorological conditions. This study examines the association of three global climate teleconnections—El‐Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi‐decadal Oscillation (AMO) with changes in terrestrial water storage (TWS) derived from both Modern‐Era Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity Recovery and Climate Experiment (GRACE, 2002–2014). In the Sahel region, positive phase of AMO coincided with above‐normal rainfall (wet conditions) and the negative phase with drought conditions and confirms the observed statistically significant association (r = 0.62) between AMO and the temporal evolutions of standardised precipitation index. This relationship corroborates the observed presence of AMO‐driven TWS in much of the Sahel region (though considerably weak in some areas). Although ENSO appears to be more associated with GRACE‐derived TWS over the Volta basin (r =?0.40), this study also shows a strong presence of AMO‐ and ENSO‐induced TWS derived from MERRA reanalysis data in the coastal West African countries and most of the regions below latitude 10°N. The observed presence of ENSO‐ and AMO‐driven TWS is noticeable in tropical areas with relatively high annual/bimodal rainfall and strong inter‐annual variations in surface water. The AMO has a wider footprint and sphere of influence on the region's TWS and suggests the important role of North Atlantic Ocean. IOD‐related TWS also exists in West Africa and its influence on the region's hydrology maybe secondary and somewhat complementary. Nonetheless, presumptive evidence from the study indicates that ENSO and AMO are the two major climatic indices more likely to impact on West Africa's TWS.  相似文献   

4.
ABSTRACT

In this research, the Bayesian quantile regression model is applied to investigate the teleconnections between large oceanic–atmospheric indices and drought standardized precipitation index (SPI) in Iran. The 12-month SPI time series from 138 synoptic stations for 1952–2014 were selected as the drought index. Three oceanic–atmospheric indices, the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI) and the Multivariate El Niño/Southern Oscillation Index (MEI), were selected as covariates. The results show that NAO has the weakest impact on drought in different quantiles and different regions in Iran. La Niña conditions amplified droughts through all SPI quantiles in western, Caspian Sea coastal regions and southern regions. The positive phase of MEI significantly modulates low SPI quantiles (i.e. drought conditions) throughout the Zagros region, Caspian Sea coastal regions and southern regions. The study shows that the effect of large oceanic–atmospheric indices have heterogeneous impacts on extreme dry and wet conditions.  相似文献   

5.
On the basis of General Circulation Model (GCM) experiments with increased CO2, many parts of the northern latitudes including western Europe, are expected to have enhanced hydrologic cycles. Using observations of precipitation and streamflow from Ireland, we test for climatic and hydrologic change in this maritime climate of the northeast Atlantic. Five decades of hourly precipitation (at eight sites) and daily streamflow at four rivers in Ireland were investigated for patterns of climate variability. An increase in annual precipitation was found to occur after 1975. This increase in precipitation is most noticeable on the West of the island. Precipitation increases are significant in March and October and are associated with increases in the frequency of wet hours with no change in the hourly intensities. Analysis of streamflow data shows the same trends. Furthermore, analysis of extreme rainfall events show that a much greater proportion of extremes have occurred in the period since 1975. A change also occurred in the North Atlantic Oscillation (NAO) index around 1975. The increased NAO since 1975 is associated with increased westerly airflow circulation in the Northeast Atlantic and is correlated with the wetter climate in Ireland. These climatic changes have implications for water resources management particularly flood analysis and protection.  相似文献   

6.
ABSTRACT

This study relies on the use and analysis of hydro-meteorological variables, long turbidity time series (from 1988 to 2009, 21 years) and a sedimentary record to provide better understanding of the hydro-sedimentary variability of the karst system near the town of Radicatel, France. Wavelet analysis of rainfall, piezometric level and turbidity, as well as the sediment archive, show common modes of variability. A common spectral composition emphasizes the influence of climate controls. Comparison of the wavelet spectra with the North Atlantic Oscillation (NAO) spectrum clearly highlights the control of the latter on hydro-meteorological variables at the regional level. Climatic fluctuations are recorded in the turbidity signal and in sedimentary fill, as revealed by the 5- to 8-year frequency band, which is characteristic of the NAO index. A climatic signal is recorded in both rainfall events and piezometric levels, and also in sediment transport and deposition at the scale of the local karst system. The overall climate control is also present beyond the local variations and heterogeneities.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR D. Yang  相似文献   

7.
In this study, the regional tree‐ring chronology of Picea crassifolia was used to estimate annual (September to August) streamflow of the Shiyang River for the period from AD 1765 to 2010. The linear regression model was stable and could explain 41.5% of the variance for the calibration period of 1955–2005. According to the streamflow reconstruction, dry periods with below average streamflow occurred in AD 1775–1804, 1814–1823, 1831–1856, 1862–1867, 1877–1885, 1905–1910, 1926–1932, 1948–1951, 1960–1963 and 1989–2002. Periods of relatively wet years are identified for AD 1765–1774, 1805–1813, 1824–1830, 1857–1861, 1868–1876, 1886–1904, 1911–1925, 1933–1947, 1952–1959, 1964–1988 and 2003–2010. Comparisons with the precipitation reconstructions from surrounding areas supplied a high degree of confidence in our reconstruction. Our reconstructed streamflow is significantly correlated with sea surface temperature in the eastern equatorial Pacific Ocean and the North Atlantic Ocean. The Multitaper spectral and correlation analyses also suggested that the reconstructed streamflow variation in the Shiyang River could be associated with large‐scale atmospheric‐oceanic variability, such as El Niño‐Southern Oscillation (ENSO). The linkages among the streamflow reconstruction, NAO and ENSO suggest the connection of regional streamflow variations to the Asian monsoon and westerlies circulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Understanding the influences of local hydroclimatology and two large-scale oceanic-atmospheric oscillations (i.e., Atlantic Multidecadal Oscillation (AMO) and El Niño-Southern Oscillation (ENSO)) on seasonal precipitation (P) and temperature (T) relationships for a tropical region (i.e., Florida) is the focus of this study. The warm and cool phases of AMO and ENSO are initially identified using sea surface temperatures (SSTs). The associations of SSTs and regional minimum, maximum and average surface air temperatures (SATs) with precipitation are then evaluated. The seasonal variations in P-SATs and P-SSTs associations considering AMO and ENSO phases for sites in (1) two soil temperature regimes (i.e., thermic and hyperthermic); (2) urban and non-urban regions; and (3) regions with and without water bodies, are analysed using two monthly datasets. The analyses are carried out using trend tests, two association measures, nonparametric and parametric statistical hypothesis tests and kernel density estimates. Decreasing (increasing) trend in precipitation (SATs) is noted in the recent multi-decadal period (1985–2019) compared to the previous one (1950–1984) indicating a progression towards warmer and drier climatic conditions across Florida. Spatially and temporally non-uniform variations in the associations of precipitation with SATs and SSTs are noted. Strong positive (weak negative) P–T associations are noted during the wet (dry) season for both AMO phases and El Niño, while significant (positive) P–T associations are observed across southern Florida during La Niña in the dry season. The seasonal influences are predominant in governing the P–T relationship over the regions with and without water bodies; however, considerable variations between El Niño and La Niña are noted during the dry season. The climate variability influences on P–T correlations for hyperthermic and thermic soil zones are found to be insignificant (significant) during the wet (dry) season. Nonparametric clustering is performed to identify the spatial clusters exhibiting homogeneous P–T relationships considering seasonal and climate variability influences.  相似文献   

9.
C. Sezen 《水文科学杂志》2020,65(11):1909-1927
ABSTRACT

In this study, annual and seasonal precipitation trend analysis was performed in the Euphrates-Tigris basin, Turkey, using innovative trend analysis (ITA) and discrete wavelet transformation. In this context, it was seen that there is a downward trend in winter, spring and annual precipitation, whereas precipitation has an increasing tendency in summer and autumn seasons, in the greater part of the basin. When annual and seasonal data were decomposed into wavelet components, the most significant trends were observed for high-periodic wavelet components, such as D3 (8-year), D4 (16-year) and D5 (32-year), where these components represent the periods of the precipitation data. Then, the relationship between North Atlantic Oscillation (NAO) and trend in precipitation was investigated. In this regard, it was found that there could be a significant relationship between the NAO and precipitation trends of the Euphrates-Tigris basin, especially in winter, based on the wavelet ITA.  相似文献   

10.
The magnitude, occurrence rate and occurrence timing of floods in the Poyang Lake basin were analysed. The flood series were acquired by annual and seasonal maximum flow (AMF) sampling and peaks-over-threshold (POT) sampling. Nonstationarity and uncertainty were analysed using kernel density estimation and the bootstrap resampling methods. Using the relationships between flood indices and climate indices, i.e. El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO), the potential causes of flooding were investigated. The results indicate that (1) the magnitudes of annual and seasonal AMF- and POT-based sampled floods generally exhibit an increasing tendency; (2) the highest occurrence rates of floods identified were during the 1990s, when the flood-affected crop area, flood-damaged crop area and crop failure area reached the highest levels; and (3) ENSO and IOD are the major climate indices that significantly correlate with the magnitude and frequency of floods of the following year.

EDITOR A. Castellarin ASSOCIATE EDITOR T. Kjeldsen  相似文献   

11.
This paper aims to provide a comprehensive review of previous studies and concepts concerning the North Atlantic Oscillation. The North Atlantic Oscillation (NAO) and its recent homologue, the Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM), are the most prominent modes of variability in the Northern Hemisphere winter climate. The NAO teleconnection is characterised by a meridional displacement of atmospheric mass over the North Atlantic area. Its state is usually expressed by the standardised air pressure difference between the Azores High and the Iceland Low. ThisNAO index is a measure of the strength of the westerly flow (positive with strong westerlies, and vice versa). Together with the El Niño/Southern Oscillation (ENSO) phenomenon, the NAO is a major source of seasonal to interdecadal variability in the global atmosphere. On interannual and shorter time scales, the NAO dynamics can be explained as a purely internal mode of variability of the atmospheric circulation. Interdecadal variability maybe influenced, however, by ocean and sea-ice processes.  相似文献   

12.
Abstract

To advance understanding of hydroclimatological processes, this paper links spatiotemporal variability in gridded European precipitation and large-scale mean sea-level pressure (MSLP) time series (1957–2002) using monthly concurrent correlation. Strong negative (positive) correlation near Iceland and (the Azores) is apparent for precipitation in northwest Europe, confirming a positive North Atlantic Oscillation (NAO) association. An opposing pattern is found for southwest Europe, and the Mediterranean in winter. In the lee of mountains, MSLP correlation is lower reflecting reduced influence of westerlies on precipitation generation. Importantly, European precipitation is shown to be controlled by physically interpretable climate patterns that change in extent and position from month to month. In spring, MSLP–precipitation correlation patterns move and shrink, reaching a minimum in summer, before expanding in the autumn, and forming an NAO-like dipole in winter. These space–time shifts in correlation regions explain why fixed-point NAO indices have limited ability to resolve precipitation for some European locations and seasons.

Editor Z.W. Kundzewicz; Associate editor A. Montanari

Citation Lavers, D., Prudhomme, C., and Hannah, D.M., 2013. European precipitation connections with large-scale mean sea-level pressure (MSLP) fields. Hydrological Sciences Journal, 58 (2), 310–327.  相似文献   

13.
ABSTRACT

In this study, a hybrid factorial stepwise-cluster analysis (HFSA) method is developed for modelling hydrological processes. The HFSA method employs a cluster tree to represent the complex nonlinear relationship between inputs (predictors) and outputs (predictands) in hydrological processes. A real case of streamflow simulation for the Kaidu River basin is applied to demonstrate the efficiency of the HFSA method. After training a total of 24?108 calibration samples, the cluster tree for daily streamflow is generated based on a stepwise-cluster analysis (SCA) approach and is then used to reproduce the daily streamflows for calibration (1995–2005) and validation (2008–2010) periods. The Nash-Sutcliffe coefficients for calibration and validation are 0.68 and 0.65, respectively, and the deviations of volume are 1.68% and 4.11%, respectively. Results show that: (i) the HFSA method can formulate a SCA-based hydrological modelling system for streamflow simulation with a satisfactory fitting; (ii) the variability and peak value of streamflow in the Kaidu River basin can be effectively captured by the SCA-based hydrological modelling system; (iii) results from 26 factorial experiments indicate that not only are minimum temperature and precipitation key drivers of system performance, but also the interaction between precipitation and minimum temperature significantly impacts on the streamflow. The findings are useful in indicating that the streamflow of the study basin is a mixture of snowmelt and rainfall water.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR G. Thirel  相似文献   

14.
ABSTRACT

The trends in hydrological and climatic time series data of Urmia Lake basin in Iran were examined using the four different versions of the Mann-Kendall (MK) approach: (i) the original MK test; (ii) the MK test considering the effect of lag-1 autocorrelation; (iii) the MK test considering the effect of all autocorrelation or sample size; and (iv) the MK test considering the Hurst coefficient. Identification of hydrological and climatic data trends was carried out at monthly and annual time scales for 25 temperature, 35 precipitation and 35 streamflow gauging stations selected from the Urmia Lake basin. Mann-Kendall and Pearson tests were also applied to explore the relationships between temperature, precipitation and streamflow trends. The results show statistically significant upward and downward trends in the annual and monthly hydrological and climatic variables. The upward trends in temperature, unlike streamflow, are much more pronounced than the downward trends, but for precipitation the behaviour of trend is different on monthly and annual time scales. Furthermore, the trend results were affected by the different approaches. Specifically, the number of stations showing trends in hydrological and climatic variables decreased significantly (up to 50%) when the fourth test was considered instead of the first and the absolute value of the Z statistic for most of the time series was reduced. The results of correlations between streamflow and climatic variables showed that the streamflow in Urmia Lake basin is more sensitive to changes in temperature than those of precipitation. The observed decreases in streamflow and increases in temperature in the Urmia Lake basin in recent decades may thus have serious implications for water resources management under the warming climate with the expected population growth and increased freshwater consumption in this region.
Editor Z. W. Kundzewicz; Associate editor Q. Zhang  相似文献   

15.
Long‐term changes and variability in river flows in the tropical Upper Suriname River Basin in Suriname (2–6°N, 54–58°W) are analysed, including the relation to sea surface temperatures (SSTs) in the tropical Atlantic and Pacific Ocean. To analyse variability, lag correlation and statistical properties of the data series are used. Long‐term changes are analysed using parametric and non‐parametric statistical techniques. The analyses are performed for the period 1952–1985. The results show that both river discharge series at Semoisie and Pokigron are non‐stationary and have a negative trend. The negative rainfall trend in the centre of Suriname may be responsible for the negative trend in the annual river discharges in the basin. The highest correlation (Pearson's coefficient c) is obtained when the Tropical North Atlantic (TNA) SSTs lags the monthly discharges at Pokigron by 3–4 months (c = 0·7) and when the Tropical South Atlantic (TSA) SSTs lags the discharges by 4 months (c = ? 0·7). It also follows that the high (low) monthly flows, from April–August (September–March) are associated with increasing (decreasing) SSTs in the TNA and with decreasing (increasing) SSTs in the TSA. The results also reveal that years with low (high) discharges are more related to warmer (colder) SSTs during the year in the TNA region and a southward displacement of the Inter‐Tropical Convergence Zone (ITCZ). However, the Pacific El Niño (La Niña) events may also be responsible for low (high) flow years in this basin. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
北半球大气遥相关型与区域尺度大气扰动   总被引:2,自引:2,他引:2       下载免费PDF全文
北极涛动(AO)、北大西洋涛动(NAO)和太平洋-北美型(PNA)等北半球大气遥相关型,可以用大气位势高度的物理分解扰动分量解释.结果发现,AO反映的是北极地区行星尺度纬圈平均扰动分量的变化,PNA与持续性天气尺度扰动分量相联系,NAO是行星尺度纬圈平均扰动与天气尺度扰动共同作用的结果.对行星尺度纬圈平均扰动分量和天气尺度扰动分量用旋转经验正交函数(REOF)展开,不但可以证实人们已经命名的区域性大气涛动,还新发现了北极地区的两对偶极涛动、欧亚涛动(EAO)和"大西洋-欧亚型"(AEA)波列.这些涛动连接了相邻地区的异常天气和异常气候.  相似文献   

17.
Abstract

Atmospheric concentrations of carbon dioxide (CO2) may double during the next century, causing changes in the Earth's climate. Warming of up to 4°C, slight cooling, and 10% changes in precipitation have been projected. Researchers have studied the possible impacts these changes may have on various aspects of the hydrological cycle, but little emphasis has been placed on snow accumulation and melt. In this study, the effects of climatic change on streamflow from a snowmelt-dominated basin in southwestern Montana, USA, are investigated. The National Weather Service River Forecast System model (NWSRFS) was first calibrated using data for the 1973–1984 period. Daily temperature and precipitation values were then changed, and the model ran again to assess the effects on snowpack and streamflow of some possible climatic changes. Results indicate that streamflow may vary by from ?22 to +45% depending on the combination of climatic changes imposed.  相似文献   

18.
This study evaluates changes in streamflow, temperature and precipitation over a time span of 105 years (1906–2010) in the Colorado River Basin (CRB). Monthly precipitation and temperature data for 29 climate divisions, and streamflow data for 29 naturalized gauges were analyzed. Two variations of the Mann-Kendall test, considering lag-1 auto correlation and long-term persistence, and the Pettitt test were employed to assess trends and shifts, respectively. Results indicated that streamflow increased during the winter–spring months and decreased during the summer– autumn period. Decreasing trends in winter precipitation were identified over snow-dominated regions in the upper basin. Significant increases in temperature were detected over several months. Major shifts were noticed in 1964, 1968 and in the late 1920s. Increasing temperature while decreasing streamflow and precipitation were noticed after major shifts in the 1930s, and these shifts coincided with coupled phases of El Niño Southern Oscillation and Pacific Decadal Oscillation.
EDITOR A. Castellarin; ASSOCIATE EDITOR R. Hirsch  相似文献   

19.
On the physics of the Atlantic Multidecadal Oscillation   总被引:1,自引:0,他引:1  
The Atlantic Multidecadal Oscillation (AMO) is a pronounced signal of climate variability in the North Atlantic sea-surface temperature field. In this paper, we propose an explanation of the physical processes responsible for the timescale and the spatial pattern of the AMO. Our approach involves the analysis of solutions of a hierarchy of models. In the lowest member of the model hierarchy, which is an ocean-only model for flow in an idealized basin, the variability shows up as a multidecadal oscillatory mode which is able to destabilize the mean thermohaline circulation. In the highest member of the model hierarchy, which is the Geophysical Fluid Dynamics Laboratory R30 climate model, multidecadal variability is found as a dominant statistical mode of variability. The connection between both results is established by tracing the spatial and temporal expression of the multidecadal mode through the model hierarchy while monitoring changes in specific quantities (mechanistic indicators) associated with its physics. The proposed explanation of the properties of the AMO is eventually based on the changes in the spatial patterns of variability through the model hierarchy.Responsible Editor: Tal Ezer  相似文献   

20.

The day-to-day effects of the strong geomagnetic disturbances on geopotential heights (GPH) in the winter lower atmosphere were described in many papers in the beginning of 1970s. These works focused on the North-East Pacific, while the North Atlantic was until now omitted. Our aim is therefore to investigate the possible effect of strong geomagnetic disturbances on the lower atmosphere GPH changes over the winter North Atlantic on the day-to-day time scale, represented by the daily index of the North Atlantic Oscillation (NAO). The investigated intervals are winter periods (December-March) of 1951–2003. The daily NAO average values in 3-day intervals before and after the disturbance onsets are compared. The graphs of NAO differences are complemented by the maps of GPH differences. The NAO response to geomagnetic disturbance, as registered on the day-to-day time scale, also shows a change in its behaviour around the year 1970. This response reaches its highest values in the years 1951–1969, usually 2–5 days following the onset of geomagnetic disturbances. Intensity of the response depends on the disturbance intensity (the largest differences were associated with extremely strong disturbances).

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号